国际肿瘤学杂志 ›› 2022, Vol. 49 ›› Issue (9): 546-549.doi: 10.3760/cma.j.cn371439-20220408-00106
张子悦1, 郑斯豪1,2, 高彦君1,2, 姚颐1,2(), 宋启斌1,2()
收稿日期:
2022-04-08
修回日期:
2022-04-29
出版日期:
2022-09-08
发布日期:
2022-10-21
通讯作者:
姚颐,宋启斌
E-mail:yaoyi2018@whu.edu.cn;qibinsong@whu.edu.cn
Zhang Ziyue1, Zheng Sihao1,2, Gao Yanjun1,2, Yao Yi1,2(), Song Qibin1,2()
Received:
2022-04-08
Revised:
2022-04-29
Online:
2022-09-08
Published:
2022-10-21
Contact:
Yao Yi,Song Qibin
E-mail:yaoyi2018@whu.edu.cn;qibinsong@whu.edu.cn
摘要:
CRISPR/Cas9及其衍生的基因编辑技术碱基编辑器和先导编辑器可对目标基因组进行精准编辑,已广泛应用于肿瘤的治疗,在肿瘤免疫疗法、治疗人乳头瘤病毒感染、构建高效溶瘤病毒等方面取得了显著成果,为肿瘤治疗提供了新手段。
张子悦, 郑斯豪, 高彦君, 姚颐, 宋启斌. 基于CRISPR/Cas9的基因编辑技术及其在肿瘤治疗中的应用[J]. 国际肿瘤学杂志, 2022, 49(9): 546-549.
Zhang Ziyue, Zheng Sihao, Gao Yanjun, Yao Yi, Song Qibin. CRISPR/Cas9 genome editing technology and its applications in tumor therapy[J]. Journal of International Oncology, 2022, 49(9): 546-549.
[1] |
Balon K, Sheriff A, Jacków J, et al. Targeting cancer with CRISPR/Cas9-based therapy[J]. Int J Mol Sci, 2022, 23(1): 573. DOI: 10.3390/ijms23010573.
doi: 10.3390/ijms23010573 |
[2] |
Jiang C, Meng L, Yang B, et al. Application of CRISPR/Cas9 gene editing technique in the study of cancer treatment[J]. Clin Genet, 2020, 97(1): 73-88. DOI: 10.1111/cge.13589.
doi: 10.1111/cge.13589 pmid: 31231788 |
[3] |
Gupta D, Bhattacharjee O, Mandal D, et al. CRISPR-Cas9 system: a new-fangled dawn in gene editing[J]. Life Sci, 2019, 232: 116636. DOI: 10.1016/j.lfs.2019.116636.
doi: 10.1016/j.lfs.2019.116636 |
[4] |
Miller SM, Wang T, Randolph PB, et al. Continuous evolution of SpCas9 variants compatible with non-G PAMs[J]. Nat Biotechnol, 2020, 38(4): 471-481. DOI: 10.1038/s41587-020-0412-8.
doi: 10.1038/s41587-020-0412-8 pmid: 32042170 |
[5] |
Walton RT, Christie KA, Whittaker MN, et al. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants[J]. Science, 2020, 368(6488): 290-296. DOI: 10.1126/science.aba8853.
doi: 10.1126/science.aba8853 pmid: 32217751 |
[6] |
Leibowitz ML, Papathanasiou S, Doerfler PA, et al. Chromothripsis as an on-target consequence of CRISPR-Cas9 genome editing[J]. Nat Genet, 2021, 53(6): 895-905. DOI: 10.1038/s41588-021-00838-7.
doi: 10.1038/s41588-021-00838-7 pmid: 33846636 |
[7] |
Haapaniemi E, Botla S, Persson J, et al. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response[J]. Nat Med, 2018, 24(7): 927-930. DOI: 10.1038/s41591-018-0049-z.
doi: 10.1038/s41591-018-0049-z pmid: 29892067 |
[8] |
Dai X, Blancafort P, Wang P, et al. Innovative precision gene-editing tools in personalized cancer medicine[J]. Adv Sci (Weinh), 2020, 7(12): 1902552. DOI: 10.1002/advs.201902552.
doi: 10.1002/advs.201902552 |
[9] |
Zhang X, Zhu B, Chen L, et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells[J]. Nat Biotechnol, 2020, 38(7): 856-860. DOI: 10.1038/s41587-020-0527-y.
doi: 10.1038/s41587-020-0527-y pmid: 32483363 |
[10] |
Grünewald J, Zhou R, Lareau CA, et al. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing[J]. Nat Biotechnol, 2020, 38(7): 861-864. DOI: 10.1038/s41587-020-0535-y.
doi: 10.1038/s41587-020-0535-y pmid: 32483364 |
[11] |
Xin H, Wan T, Ping Y. Off-targeting of base editors: BE3 but not ABE induces substantial off-target single nucleotide variants[J]. Signal Transduct Target Ther, 2019, 4: 9. DOI: 10.1038/s41392-019-0044-y.
doi: 10.1038/s41392-019-0044-y |
[12] |
Zuo E, Sun Y, Wei W, et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos[J]. Science, 2019, 364(6437): 289-292. DOI: 10.1126/science.aav9973.
doi: 10.1126/science.aav9973 pmid: 30819928 |
[13] |
da Costa BL, Levi SR, Eulau E, et al. Prime editing for inherited retinal diseases[J]. Front Genome Ed, 2021, 3: 775330. DOI: 10.3389/fgeed.2021.775330.
doi: 10.3389/fgeed.2021.775330 |
[14] |
Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019, 576(7785): 149-157. DOI: 10.1038/s41586-019-1711-4.
doi: 10.1038/s41586-019-1711-4 |
[15] |
Kagoya Y, Guo T, Yeung B, et al. Genetic ablation of HLA class Ⅰ, class Ⅱ, and the t-cell receptor enables allogeneic T cells to be used for adoptive t-cell therapy[J]. Cancer Immunol Res, 2020, 8(7): 926-936. DOI: 10.1158/2326-6066.CIR-18-0508.
doi: 10.1158/2326-6066.CIR-18-0508 pmid: 32321775 |
[16] |
Zhao Z, Li C, Tong F, et al. Review of applications of CRISPR-Cas9 gene-editing technology in cancer research[J]. Biol Proced Online, 2021, 23(1): 14. DOI: 10.1186/s12575-021-00151-x.
doi: 10.1186/s12575-021-00151-x |
[17] |
Gao Q, Dong X, Xu Q, et al. Therapeutic potential of CRISPR/Cas9 gene editing in engineered T-cell therapy[J]. Cancer Med, 2019, 8(9): 4254-4264. DOI: 10.1002/cam4.2257.
doi: 10.1002/cam4.2257 |
[18] |
Choi BD, Yu X, Castano AP, et al. CRISPR-Cas9 disruption of PD-1 enhances activity of Universal EGFRvⅢ CAR T cells in a preclinical model of human glioblastoma[J]. J Immunother Cancer, 2019, 7(1): 304. DOI: 10.1186/s40425-019-0806-7.
doi: 10.1186/s40425-019-0806-7 |
[19] |
Morimoto T, Nakazawa T, Matsuda R, et al. CRISPR-Cas9-mediated TIM3 knockout in human natural killer cells enhances growth inhibitory effects on human glioma cells[J]. Int J Mol Sci, 2021, 22(7): 3489. DOI: 10.3390/ijms22073489.
doi: 10.3390/ijms22073489 |
[20] |
Jung IY, Kim YY, Yu HS, et al. CRISPR/Cas9-Mediated knockout of DGK improves antitumor activities of human T cells[J]. Cancer Res, 2018, 78(16): 4692-4703. DOI: 10.1158/0008-5472.CAN-18-0030.
doi: 10.1158/0008-5472.CAN-18-0030 |
[21] |
Tang N, Cheng C, Zhang X, et al. TGF-β inhibition via CRISPR promotes the long-term efficacy of CAR T cells against solid tumors[J]. JCI Insight, 2020, 5(4): e133977. DOI: 10.1172/jci.insight.133977.
doi: 10.1172/jci.insight.133977 |
[22] |
Wang Z, Li N, Feng K, et al. Phase Ⅰ study of CAR-T cells with PD-1 and TCR disruption in mesothelin-positive solid tumors[J]. Cell Mol Immunol, 2021, 18(9): 2188-2198. DOI: 10.1038/s41423-021-00749-x.
doi: 10.1038/s41423-021-00749-x |
[23] |
Webber BR, Lonetree CL, Kluesner MG, et al. Highly efficient multiplex human T cell engineering without double-strand breaks using Cas9 base editors[J]. Nat Commun, 2019, 10(1): 5222. DOI: 10.1038/s41467-019-13007-6.
doi: 10.1038/s41467-019-13007-6 |
[24] |
Ou X, Ma Q, Yin W, et al. CRISPR/Cas9 gene-editing in cancer immunotherapy: promoting the present revolution in cancer therapy and exploring more[J]. Front Cell Dev Biol, 2021, 9: 674467. DOI: 10.3389/fcell.2021.674467.
doi: 10.3389/fcell.2021.674467 |
[25] |
Morton LT, Reijmers RM, Wouters AK, et al. Simultaneous deletion of endogenous TCRαβ for TCR gene therapy creates an improved and safe cellular therapeutic[J]. Mol Ther, 2020, 28(1): 64-74. DOI: 10.1016/j.ymthe.2019.10.001.
doi: S1525-0016(19)30455-1 pmid: 31636040 |
[26] |
Stadtmauer EA, Fraietta JA, Davis MM, et al. CRISPR-engineered T cells in patients with refractory cancer[J]. Science, 2020, 367(6481): eaba7365. DOI: 10.1126/science.aba7365.
doi: 10.1126/science.aba7365 |
[27] |
Guo X, Jiang H, Shi B, et al. Disruption of PD-1 enhanced the anti-tumor activity of chimeric antigen receptor T cells against hepatocellular carcinoma[J]. Front Pharmacol, 2018, 9: 1118. DOI: 10.3389/fphar.2018.01118.
doi: 10.3389/fphar.2018.01118 pmid: 30327605 |
[28] |
He XY, Ren XH, Peng Y, et al. Aptamer/peptide-functionalized genome-editing system for effective immune restoration through reversal of PD-L1-Mediated cancer immunosuppression[J]. Adv Mater, 2020, 32(17): e2000208. DOI: 10.1002/adma.202000208.
doi: 10.1002/adma.202000208 |
[29] |
Lu Y, Xue J, Deng T, et al. Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer[J]. Nat Med, 2020, 26(5): 732-740. DOI: 10.1038/s41591-020-0840-5.
doi: 10.1038/s41591-020-0840-5 pmid: 32341578 |
[30] |
Jubair L, Fallaha S, McMillan NAJ. Systemic delivery of CRISPR/Cas9 targeting HPV oncogenes is effective at eliminating established tumors[J]. Mol Ther, 2019, 27(12): 2091-2099. DOI: 10.1016/j.ymthe.2019.08.012.
doi: S1525-0016(19)30395-8 pmid: 31537455 |
[31] |
Zhang H, Qin C, An C, et al. Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer[J]. Mol Cancer, 2021, 20(1): 126. DOI: 10.1186/s12943-021-01431-6.
doi: 10.1186/s12943-021-01431-6 pmid: 34598686 |
[32] |
Xiong J, Tan S, Yu L, et al. E7-targeted nanotherapeutics for key HPV afflicted cervical lesions by employing CRISPR/Cas9 and poly (beta-amino ester)[J]. Int J Nanomedicine, 2021, 16: 7609-7622. DOI: 10.2147/IJN.S335277.
doi: 10.2147/IJN.S335277 |
[33] |
Chen M, Mao A, Xu M, et al. CRISPR-Cas 9 for cancer therapy: opportunities and challenges[J]. Cancer Lett, 2019, 447: 48-55. DOI: 10.1016/j.canlet.2019.01.017.
doi: 10.1016/j.canlet.2019.01.017 |
[34] |
Azangou-Khyavy M, Ghasemi M, Khanali J, et al. CRISPR/Cas: from tumor gene editing to T Cell-Based immunotherapy of cancer[J]. Front Immunol, 2020, 11: 2062. DOI: 10.3389/fimmu.2020.02062.
doi: 10.3389/fimmu.2020.02062 pmid: 33117331 |
[35] |
Ebrahimi S, Makvandi M, Abbasi S, et al. Developing oncolytic Herpes simplex virus type 1 through UL39 knockout by CRISPR-Cas9[J]. Iran J Basic Med Sci, 2020, 23(7): 937-944. DOI: 10.22038/ijbms.2020.43864.10286.
doi: 10.22038/ijbms.2020.43864.10286 pmid: 32774817 |
[36] |
Cai L, Hu H, Duan H, et al. The construction of a new oncolytic herpes simplex virus expressing murine interleukin-15 with gene-editing technology[J]. J Med Virol, 2020, 92(12): 3617-3627. DOI: 10.1002/jmv.25691.
doi: 10.1002/jmv.25691 |
[1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲. 血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. |
[2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊. 局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[3] | 袁健, 黄燕华. Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. |
[4] | 陈红健, 张素青. 血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. |
[5] | 郭泽浩, 张俊旺. PFDN及其亚基在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2024, 51(6): 350-353. |
[6] | 张百红, 岳红云. 新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. |
[7] | 许凤琳, 吴刚. EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[8] | 王盈, 刘楠, 郭兵. 抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[9] | 张蕊, 褚衍六. 基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[10] | 高凡, 王萍, 杜超, 褚衍六. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[11] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东. ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. |
[12] | 范志鹏, 余静, 胡静, 廖正凯, 徐禹, 欧阳雯, 谢丛华. 炎症标志物的变化趋势对一线接受免疫联合化疗的晚期非小细胞肺癌患者预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(5): 257-266. |
[13] | 刘静, 刘芹, 黄梅. 基于SMOTE算法的食管癌放化疗患者肺部感染的预后模型构建[J]. 国际肿瘤学杂志, 2024, 51(5): 267-273. |
[14] | 杨琳, 路宁, 温华, 张明鑫, 朱琳. 炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[15] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝. 癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||