| [1] | 
																						 
											 U.S. Food and Drug Administration. FDA approves first liquid biopsy next-generation sequencing companion diagnostic test[EB/OL].[2020-08-11]. https://www.fda.gov/news-events/press-announcements/fda-approves-first-liquid-biopsy-next-generation-sequencing-companion-diagnostic-test. 
											 											 | 
										
																													
																						| [2] | 
																						 
											  Kang S, Li Q, Chen Q, et al. CancerLocator: non-invasive cancer diagnosis and tissue-of-origin prediction using methylation profiles of cell-free DNA[J]. Genome Biol, 2017,18(1):53. DOI: 10.1186/s13059-017-1191-5. 
											 												 
																									doi: 10.1186/s13059-017-1191-5
																																			 											 | 
										
																													
																						| [3] | 
																						 
											  Jensen SØ, Øgaard N, Ørntoft MW, et al. Novel DNA methylation biomarkers show high sensitivity and specificity for blood-based detection of colorectal cancer-a clinical biomarker discovery and validation study[J]. Clin Epigenetics, 2019,11(1):158. DOI: 10.1186/s13148-019-0757-3. 
											 												 
																									doi: 10.1186/s13148-019-0757-3
																																			 											 | 
										
																													
																						| [4] | 
																						 
											  Chen X, Gole J, Gore A, et al. Non-invasive early detection of cancer four years before conventional diagnosis using a blood test[J]. Nat Commun, 2020,11(1):3475. DOI: 10.1038/s41467-020-17316-z. 
											 												 
																									doi: 10.1038/s41467-020-17316-z
																																			 											 | 
										
																													
																						| [5] | 
																						 
											  Widschwendter M, Zikan M, Wahl B, et al. The potential of circula-ting tumor DNA methylation analysis for the early detection and management of ovarian cancer[J]. Genome Med, 2017,9(1):116. DOI: 10.1186/s13073-017-0500-7. 
											 												 
																									doi: 10.1186/s13073-017-0500-7
																																					pmid: 29268796
																							 											 | 
										
																													
																						| [6] | 
																						 
											  Sheaffer KL, Elliott EN, Kaestner KH. DNA hypomethylation contributes to genomic instability and intestinal cancer initiation[J]. Cancer Prev Res (Phila), 2016,9(7):534-546. DOI: 10.1158/1940-6207.CAPR-15-0349. 
											 												 
																									doi: 10.1158/1940-6207.CAPR-15-0349
																																					pmid: 26883721
																							 											 | 
										
																													
																						| [7] | 
																						 
											  Margalit S, Avraham S, Shahal T, et al. 5-Hydroxymethylcytosine as a clinical biomarker: fluorescence-based assay for high-throughput epigenetic quantification in human tissues[J]. Int J Cancer, 2020,146(1):115-122. DOI: 10.1002/ijc.32519. 
											 												 
																									doi: 10.1002/ijc.32519
																																					pmid: 31211411
																							 											 | 
										
																													
																						| [8] | 
																						 
											  Pfeifer GP, Szabó PE. Gene body profiles of 5-hydroxymethylcytosine: potential origin, function and use as a cancer biomarker[J]. Epigenomics, 2018,10(8):1029-1032. DOI: 10.2217/epi-2018-0066. 
											 												 
																									doi: 10.2217/epi-2018-0066
																																					pmid: 30052061
																							 											 | 
										
																													
																						| [9] | 
																						 
											  Zeng C, Stroup EK, Zhang Z, et al. Towards precision medicine: advances in 5-hydroxymethylcytosine cancer biomarker discovery in liquid biopsy[J]. Cancer Commun (Lond), 2019,39(1):12. DOI: 10.1186/s40880-019-0356-x. 
											 											 | 
										
																													
																						| [10] | 
																						 
											  Li D, Zeng Z. Epigenetic regulation of histone H3 in the process of hepatocellular tumorigenesis[J]. Biosci Rep, 2019, 39(8): BSR20191815. DOI: 10.1042/BSR20191815. 
											 											 | 
										
																													
																						| [11] | 
																						 
											  Chrun ES, Modolo F, Daniel FI. Histone modifications: a review about the presence of this epigenetic phenomenon in carcinogenesis[J]. Pathol Res Pract, 2017,213(11):1329-1339. DOI: 10.1016/j.prp.2017.06.013. 
											 												 
																									doi: 10.1016/j.prp.2017.06.013
																																			 											 | 
										
																													
																						| [12] | 
																						 
											  Li YH, Li YX, Li M, et al. The Ras-ERK1/2 signaling pathway regulates H3K9ac through PCAF to promote the development of pancreatic cancer[J]. Life Sci, 2020,256:117936. DOI: 10.1016/j.lfs.2020.117936. 
											 												 
																									doi: 10.1016/j.lfs.2020.117936
																																			 											 | 
										
																													
																						| [13] | 
																						 
											  Chae YK, Davis AA, Jain S, et al. Concordance of genomic alterations by next-generation sequencing in tumor tissue versus circulating tumor DNA in breast cancer[J]. Mol Cancer Ther, 2017,16(7):1412-1420. DOI: 10.1158/1535-7163.MCT-17-0061. 
											 												 
																									doi: 10.1158/1535-7163.MCT-17-0061
																																			 											 | 
										
																													
																						| [14] | 
																						 
											  Guo Q, Wang J, Xiao J, et al. Heterogeneous mutation pattern in tumor tissue and circulating tumor DNA warrants parallel NGS panel testing[J]. Mol Cancer, 2018,17(1):131. DOI: 10.1186/s12943-018-0875-0. 
											 												 
																									doi: 10.1186/s12943-018-0875-0
																																			 											 | 
										
																													
																						| [15] | 
																						 
											  Huang J, Wang L. Cell-free DNA methylation profiling analysis-technologies and bioinformatics[J]. Cancers (Basel), 2019,11(11):1741. DOI: 10.3390/cancers11111741. 
											 												 
																									doi: 10.3390/cancers11111741
																																			 											 | 
										
																													
																						| [16] | 
																						 
											  Shen SY, Singhania R, Fehringer G, et al. Sensitive tumour detection and classification using plasma cell-free DNA methylomes[J]. Nature, 2018,563(7732):579-583. DOI: 10.1038/s41586-018-0703-0. 
											 												 
																									doi: 10.1038/s41586-018-0703-0
																																					pmid: 30429608
																							 											 | 
										
																													
																						| [17] | 
																						 
											  Shen SY, Burgener JM, Bratman SV, et al. Preparation of cfMeDIP-seq libraries for methylome profiling of plasma cell-free DNA[J]. Nat Protoc, 2019,14(10):2749-2780. DOI: 10.1038/s41596-019-0202-2. 
											 												 
																									doi: 10.1038/s41596-019-0202-2
																																					pmid: 31471598
																							 											 | 
										
																													
																						| [18] | 
																						 
											  Song CX, Szulwach KE, Fu Y, et al. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine[J]. Nat Biotechnol, 2011,29(1):68-72. DOI: 10.1038/nbt.1732. 
											 												 
																									doi: 10.1038/nbt.1732
																																			 											 | 
										
																													
																						| [19] | 
																						 
											  Song CX, Yin S, Ma L, et al. 5-Hydroxymethylcytosine signatures in cell-free DNA provide information about tumor types and stages[J]. Cell Res, 2017,27(10):1231-1242. DOI: 10.1038/cr.2017.106. 
											 												 
																									doi: 10.1038/cr.2017.106
																																			 											 | 
										
																													
																						| [20] | 
																						 
											  Zeng H, He B, Xia B, et al. Bisulfite-free, nanoscale analysis of 5-Hydroxymethylcytosine at single base resolution[J]. J Am Chem Soc, 2018,140(41):13190-13194. DOI: 10.1021/jacs.8b08297. 
											 												 
																									doi: 10.1021/jacs.8b08297
																																			 											 | 
										
																													
																						| [21] | 
																						 
											  Yuan F, Yu Y, Zhou YL, et al. 5hmC-MIQuant: ultrasensitive quantitative detection of 5-hydroxymethylcytosine in low-input cell-free DNA samples[J]. Anal Chem, 2020,92(1):1605-1610. DOI: 10.1021/acs.analchem.9b04920. 
											 												 
																									doi: 10.1021/acs.analchem.9b04920
																																			 											 | 
										
																													
																						| [22] | 
																						 
											  Reddy D, Khade B, Pandya R, et al. A novel method for isolation of histones from serum and its implications in therapeutics and prognosis of solid tumours[J]. Clin Epigenetics, 2017,9:30. DOI: 10.1186/s13148-017-0330-x. 
											 												 
																									doi: 10.1186/s13148-017-0330-x
																																			 											 | 
										
																													
																						| [23] | 
																						 
											  Hlady RA, Zhao X, Pan X, et al. Genome-wide discovery and validation of diagnostic DNA methylation-based biomarkers for hepatocellular cancer detection in circulating cell free DNA[J]. Theranostics, 2019,9(24):7239-7250. DOI: 10.7150/thno.35573. 
											 												 
																									doi: 10.7150/thno.35573
																																					pmid: 31695765
																							 											 | 
										
																													
																						| [24] | 
																						 
											  Nassiri F, Chakravarthy A, Feng S, et al. Detection and discrimination of intracranial tumors using plasma cell-free DNA methylomes[J]. Nat Med, 2020,26(7):1044-1047. DOI: 10.1038/s41591-020-0932-2. 
											 												 
																									doi: 10.1038/s41591-020-0932-2
																																			 											 | 
										
																													
																						| [25] | 
																						 
											  Nuzzo PV, Berchuck JE, Korthauer K, et al. Detection of renal cell carcinoma using plasma and urine cell-free DNA methylomes[J]. Nat Med, 2020,26(7):1041-1043. DOI: 10.1038/s41591-020-0933-1. 
											 												 
																									doi: 10.1038/s41591-020-0933-1
																																			 											 | 
										
																													
																						| [26] | 
																						 
											  Ko JMY, Ng HY, Lam KO, et al. Liquid biopsy serial monitoring of treatment responses and relapse in advanced esophageal squamous cell carcinoma[J]. Cancers (Basel), 2020,12(6):1352. DOI: 10.3390/cancers12061352. 
											 												 
																									doi: 10.3390/cancers12061352
																																			 											 | 
										
																													
																						| [27] | 
																						 
											  Lehmann-Werman R, Neiman D, Zemmour H, et al. Identification of tissue-specific cell death using methylation patterns of circulating DNA[J]. Proc Natl Acad Sci U S A, 2016,113(13):E1826-E1834. DOI: 10.1073/pnas.1519286113. 
											 												 
																									doi: 10.1073/pnas.1519286113
																																			 											 | 
										
																													
																						| [28] | 
																						 
											  Barault L, Amatu A, Siravegna G, et al. Discovery of methylated circulating DNA biomarkers for comprehensive non-invasive monitoring of treatment response in metastatic colorectal cancer[J]. Gut, 2018,67(11):1995-2005. DOI: 10.1136/gutjnl-2016-313372. 
											 												 
																									doi: 10.1136/gutjnl-2016-313372
																																			 											 | 
										
																													
																						| [29] | 
																						 
											  Duruisseaux M, Martínez-Cardús A, Calleja-Cervantes ME, et al. Epigenetic prediction of response to anti-PD-1 treatment in non-small-cell lung cancer: a multicentre, retrospective analysis[J]. Lancet Respir Med, 2018,6(10):771-781. DOI: 10.1016/S2213-2600(18)30284-4. 
											 												 
																									doi: S2213-2600(18)30284-4
																																					pmid: 30100403
																							 											 | 
										
																													
																						| [30] | 
																						 
											  Jensen LH, Olesen R, Petersen LN, et al. NPY gene methylation as a universal, longitudinal plasma marker for evaluating the clinical benefit from last-line treatment with regorafenib in metastatic colorectal cancer[J]. Cancers (Basel), 2019,11(11):1649. DOI: 10.3390/cancers11111649. 
											 												 
																									doi: 10.3390/cancers11111649
																																			 											 |