国际肿瘤学杂志 ›› 2021, Vol. 48 ›› Issue (6): 354-357.doi: 10.3760/cma.j.cn371439-20201119-00067
收稿日期:
2020-11-19
修回日期:
2020-12-26
出版日期:
2021-06-08
发布日期:
2021-06-24
通讯作者:
寿伟臻
E-mail:shouweizhen@sina.com
Received:
2020-11-19
Revised:
2020-12-26
Online:
2021-06-08
Published:
2021-06-24
Contact:
Shou Weizhen
E-mail:shouweizhen@sina.com
摘要:
新型免疫检查点靶标如淋巴细胞激活基因-3、T细胞免疫球蛋白黏蛋白-3、T细胞免疫球蛋白和ITIM结构域、T细胞活化的V结构域免疫球蛋白、B7同系物3、B和T淋巴细胞弱化子在肿瘤治疗中具有重要作用,阻断它们可延缓肿瘤生长、增强免疫细胞抗肿瘤作用、提高宿主存活率,虽然这些新型免疫检查点处于研究的早期阶段,但随着科技的不断发展,其在肿瘤免疫治疗中将发挥越来越重要的作用。
吴远玲, 寿伟臻. 新型免疫检查点在肿瘤治疗中的作用[J]. 国际肿瘤学杂志, 2021, 48(6): 354-357.
Wu Yuanling, Shou Weizhen. Role of new immune checkpoints in tumor treatment[J]. Journal of International Oncology, 2021, 48(6): 354-357.
[1] |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018,68(6):394-424. DOI: 10.3322/caac.21492.
doi: 10.3322/caac.v68.6 |
[2] |
Qin S, Xu L, Yi M, et al. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4[J]. Mol Cancer, 2019,18(1):155. DOI: 10.1186/s12943-019-1091-2.
doi: 10.1186/s12943-019-1091-2 |
[3] |
Perez-Santos M, Anaya-Ruiz M, Cebada J, et al. LAG-3 antagonists by cancer treatment: a patent review[J]. Expert Opin Ther Pat, 2019,29(8):643-651. DOI: 10.1080/13543776.2019.1642873.
doi: 10.1080/13543776.2019.1642873 pmid: 31291131 |
[4] |
Deng WW, Mao L, Yu GT, et al. LAG-3 confers poor prognosis and its blockade reshapes antitumor response in head and neck squamous cell carcinoma[J]. Oncoimmunology, 2016,5(11):e1239005. DOI: 10.1080/2162402X.2016.1239005.
doi: 10.1080/2162402X.2016.1239005 |
[5] | Huang RY, Francois A, McGray AR, et al. Compensatory upregulation of PD-1, LAG-3, and CTLA-4 limits the efficacy of single-agent checkpoint blockade in metastatic ovarian cancer[J]. Oncoimmuno-logy, 2016,6(1):e1249561. DOI: 10.1080/2162402X.2016.1249561. |
[6] |
Wang J, Sanmamed MF, Datar I, et al. Fibrinogen-like protein 1 is a major immune inhibitory ligand of LAG-3[J]. Cell, 2019, 176(1-2): 334-347.e12. DOI: 10.1016/j.cell.2018.11.010.
doi: S0092-8674(18)31502-2 pmid: 30580966 |
[7] |
Du W, Yang M, Turner A, et al. TIM-3 as a target for cancer immunotherapy and mechanisms of action[J]. Int J Mol Sci, 2017,18(3):645. DOI: 10.3390/ijms18030645.
doi: 10.3390/ijms18030645 |
[8] |
Yuan J, Jiang B, Zhao H, et al. Prognostic implication of TIM-3 in clear cell renal cell carcinoma[J]. Neoplasma, 2014,61(1):35-40.
pmid: 24195506 |
[9] |
Yu M, Lu B, Liu Y, et al. Tim-3 is upregulated in human colorectal carcinoma and associated with tumor progression[J]. Mol Med Rep, 2017,15(2):689-695. DOI: 10.3892/mmr.2016.6065.
doi: 10.3892/mmr.2016.6065 |
[10] |
Cheng L, Ruan Z. Tim-3 and Tim-4 as the potential targets for antitumor therapy[J]. Hum Vaccin Immunother, 2015,11(10):2458-2462. DOI: 10.1080/21645515.2015.1056953.
doi: 10.1080/21645515.2015.1056953 pmid: 26211834 |
[11] |
Nakano M, Ito M, Tanaka R, et al. PD-1+ TIM-3+ T cells in malignant ascites predict prognosis of gastrointestinal cancer[J]. Cancer Sci, 2018,109(9):2986-2992. DOI: 10.1111/cas.13723.
doi: 10.1111/cas.2018.109.issue-9 |
[12] |
Zhang H, Song Y, Yang H, et al. Tumor cell-intrinsic Tim-3 promotes liver cancer via NF-κB/IL-6/STAT3 axis[J]. Oncogene, 2018,37(18):2456-2468. DOI: 10.1038/s41388-018-0140-4.
doi: 10.1038/s41388-018-0140-4 |
[13] |
Liu JF, Wu L, Yang LL, et al. Blockade of TIM3 relieves immunosuppression through reducing regulatory T cells in head and neck cancer[J]. J Exp Clin Cancer Res, 2018,37(1):44. DOI: 10.1186/s13046-018-0713-7.
doi: 10.1186/s13046-018-0713-7 |
[14] |
Xiao Y, Qing J, Li B, et al. TIM-3 participates in the invasion and metastasis of nasopharyngeal carcinoma via SMAD7/SMAD2/SNAIL1 axis-mediated epithelial-mesenchymal transition[J]. Onco Targets Ther, 2020,13:1993-2006. DOI: 10.2147/OTT.S237222.
doi: 10.2147/OTT |
[15] | Pu F, Chen F, Zhang Z, et al. TIM-3 expression and its association with overall survival in primary osteosarcoma[J]. Oncol Lett, 2019,18(5):5294-5300. DOI: 10.3892/ol.2019.10855. |
[16] |
Liu F, Liu Y, Chen Z. Tim-3 expression and its role in hepatocellular carcinoma[J]. J Hematol Oncol, 2018,11(1):126. DOI: 10.1186/s13045-018-0667-4.
doi: 10.1186/s13045-018-0667-4 |
[17] |
Mollica V, Di Nunno V, Gatto L, et al. Novel therapeutic approaches and targets currently under evaluation for renal cell carcinoma: waiting for the revolution[J]. Clin Drug Investig, 2019,39(6):503-519. DOI: 10.1007/s40261-019-00773-w.
doi: 10.1007/s40261-019-00773-w |
[18] |
Cong Y, Cui Y, Zhu S, et al. Tim-3 promotes cell aggressiveness and paclitaxel resistance through NF-κB/STAT3 signalling pathway in breast cancer cells[J]. Chin J Cancer Res, 2020,32(5):564-579. DOI: 10.21147/j.issn.1000-9604.2020.05.02.
doi: 10.21147/j.issn.1000-9604.2020.05.02 |
[19] |
Dougall WC, Kurtulus S, Smyth MJ, et al. TIGIT and CD96: new checkpoint receptor targets for cancer immunotherapy[J]. Immunol Rev, 276(1):112-120. DOI: 10.1111/imr.12518.
doi: 10.1111/imr.2017.276.issue-1 |
[20] |
Zhang Q, Bi J, Zheng X, et al. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity[J]. Nat Immunol, 2018,19(7):723-732. DOI: 10.1038/s41590-018-0132-0.
doi: 10.1038/s41590-018-0132-0 |
[21] |
Guillerey C, Harjunpää H, Carrié N, et al. TIGIT immune checkpoint blockade restores CD8+ T-cell immunity against multiple myeloma[J]. Blood, 2018,132(16):1689-1694. DOI: 10.1182/blood-2018-01-825265.
doi: 10.1182/blood-2018-01-825265 pmid: 29986909 |
[22] | Duan X, Liu J, Cui J, et al. Expression of TIGIT/CD155 and correlations with clinical pathological features in human hepatocellular carcinoma[J]. Mol Med Rep, 2019,20(4):3773-3781. DOI: 10.3892/mmr.2019.10641. |
[23] | Solomon BL, Garrido-Laguna I. TIGIT: a novel immunotherapy target moving from bench to bedside[J]. Cancer Immunol Immuno-ther, 2018,67(11):1659-1667. DOI: 10.1007/s00262-018-2246-5. |
[24] |
Le Mercier I, Chen W, Lines JL, et al. VISTA regulates the deve-lopment of protective antitumor immunity[J]. Cancer Res, 2014,74(7):1933-1944. DOI: 10.1158/0008-5472.CAN-13-1506.
doi: 10.1158/0008-5472.CAN-13-1506 |
[25] |
Blando J, Sharma A, Higa MG, et al. Comparison of immune infiltrates in melanoma and pancreatic cancer highlights VISTA as a potential target in pancreatic cancer[J]. Proc Natl Acad Sci U S A, 2019,116(5):1692-1697. DOI: 10.1073/pnas.1811067116.
doi: 10.1073/pnas.1811067116 |
[26] |
Zhang M, Pang HJ, Zhao W, et al. VISTA expression associated with CD8 confers a favorable immune microenvironment and better overall survival in hepatocellular carcinoma[J]. BMC Cancer, 2018,18(1):511. DOI: 10.1186/s12885-018-4435-1.
doi: 10.1186/s12885-018-4435-1 pmid: 29720116 |
[27] |
Zong L, Zhou Y, Zhang M, et al. VISTA expression is associated with a favorable prognosis in patients with high-grade serous ovarian cancer[J]. Cancer Immunol Immunother, 2020,69(1):33-42. DOI: 10.1007/s00262-019-02434-5.
doi: 10.1007/s00262-019-02434-5 |
[28] |
Dempke WCM, Fenchel K, Uciechowski P, et al. Second- and third-generation drugs for immuno-oncology treatment-the more the better?[J]. Eur J Cancer, 2017,74:55-72. DOI: 10.1016/j.ejca.2017.01.001.
doi: 10.1016/j.ejca.2017.01.001 |
[29] |
Musielak B, Kocik J, Skalniak L, et al. CA-170-a potent small-molecule PD-L1 inhibitor or not?[J]. Molecules, 2019,24(15):2804. DOI: 10.3390/molecules24152804.
doi: 10.3390/molecules24152804 |
[30] |
Castellanos JR, Purvis IJ, Labak CM, et al. B7-H3 role in the immune landscape of cancer[J]. Am J Clin Exp Immunol, 2017,6(4):66-75.
pmid: 28695059 |
[31] | Jin Y, Zhang P, Li J, et al. B7-H3 in combination with regulatory T cell is associated with tumor progression in primary human non-small cell lung cancer[J]. Int J Clin Exp Pathol, 2015,8(11):13987-13995. |
[32] |
Li M, Zhang G, Zhang X, et al. Overexpression of B7-H3 in CD14+ monocytes is associated with renal cell carcinoma progression[J]. Med Oncol, 2014,31(12):349. DOI: 10.1007/s12032-014-0349-1.
doi: 10.1007/s12032-014-0349-1 |
[33] |
Bin Z, Guangbo Z, Yan G, et al. Overexpression of B7-H3 in CD133+ colorectal cancer cells is associated with cancer progression and survival in human patients[J]. J Surg Res, 2014,188(2):396-403. DOI: 10.1016/j.jss.2014.01.014.
doi: 10.1016/j.jss.2014.01.014 |
[34] | Mao Y, Chen L, Wang F, et al. Cancer cell-expressed B7-H3 regulates the differentiation of tumor-associated macrophages in human colorectal carcinoma[J]. Oncol Lett, 2017,14(5):6177-6183. DOI: 10.3892/ol.2017.6935. |
[35] |
Liu C, Liu J, Wang J, et al. B7-H3 expression in ductal and lobular breast cancer and its association with IL-10[J]. Mol Med Rep, 2013,7(1):134-138. DOI: 10.3892/mmr.2012.1158.
doi: 10.3892/mmr.2012.1158 |
[36] |
Benzon B, Zhao SG, Haffner MC, et al. Correlation of B7-H3 with androgen receptor, immune pathways and poor outcome in prostate cancer: an expression-based analysis[J]. Prostate Cancer Prostatic Dis, 2017,20(1):28-35. DOI: 10.1038/pcan.2016.49.
doi: 10.1038/pcan.2016.49 |
[37] |
He L, Li Z. B7-H3 and its role in bone cancers[J]. Pathol Res Pract. 2019,215(6):152420. DOI: 10.1016/j.prp.2019.04.012.
doi: 10.1016/j.prp.2019.04.012 |
[38] |
Yang S, Wei W, Zhao Q. B7-H3, a checkpoint molecule, as a target for cancer immunotherapy[J]. Int J Biol Sci, 2020,16(11):1767-1773. DOI: 10.7150/ijbs.41105.
doi: 10.7150/ijbs.41105 |
[39] | Davar D, Zarour HM. Immunological targets for immunotherapy: inhibitory T cell receptors[J]. Methods Mol Biol, 2020,2055:23-60. DOI: 10.1007/978-1-4939-9773-2_2. |
[40] |
Sedy JR, Gavrieli M, Potter KG, et al. B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator[J]. Nat Immunol, 2005,6(1):90-98. DOI: 10.1038/ni1144.
doi: 10.1038/ni1144 |
[41] |
Khadhraoui C, Kaabachi W, Tritar F, et al. Association of BTLA rs1982809 polymorphism with lung cancer risk in tunisian population[J]. Int J Immunogenet, 2020,47(6):554-562. DOI: 10.1111/iji.12491.
doi: 10.1111/iji.v47.6 |
[42] |
Chen YL, Lin HW, Chien CL, et al. BTLA blockade enhances cancer therapy by inhibiting IL-6/IL-10-induced CD19high B lymphocytes[J]. J Immunother Cancer, 2019,7(1):313. DOI: 10.1186/s40425-019-0744-4.
doi: 10.1186/s40425-019-0744-4 |
[1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲. 血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. |
[2] | 钱晓涛, 石子宜, 胡格, 吴晓维. Ⅲ~ⅣA期食管鳞状细胞癌放化疗后行巩固化疗的疗效:一项真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(6): 326-331. |
[3] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊. 局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[4] | 袁健, 黄燕华. Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. |
[5] | 陈红健, 张素青. 血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. |
[6] | 郭泽浩, 张俊旺. PFDN及其亚基在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2024, 51(6): 350-353. |
[7] | 张百红, 岳红云. 新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. |
[8] | 许凤琳, 吴刚. EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[9] | 王盈, 刘楠, 郭兵. 抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[10] | 张蕊, 褚衍六. 基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[11] | 高凡, 王萍, 杜超, 褚衍六. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[12] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东. ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. |
[13] | 刘静, 刘芹, 黄梅. 基于SMOTE算法的食管癌放化疗患者肺部感染的预后模型构建[J]. 国际肿瘤学杂志, 2024, 51(5): 267-273. |
[14] | 杨琳, 路宁, 温华, 张明鑫, 朱琳. 炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[15] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝. 癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||