国际肿瘤学杂志 ›› 2024, Vol. 51 ›› Issue (10): 650-654.doi: 10.3760/cma.j.cn371439-20240429-00109
收稿日期:
2024-04-29
修回日期:
2024-05-16
出版日期:
2024-10-08
发布日期:
2024-12-04
通讯作者:
徐红
E-mail:13301549066@163.com
Chen Jie, Xu Hong(), Chen Yutian
Received:
2024-04-29
Revised:
2024-05-16
Online:
2024-10-08
Published:
2024-12-04
Contact:
Xu Hong
E-mail:13301549066@163.com
摘要:
远处转移是导致晚期结直肠癌患者死亡的主要原因,肿瘤细胞源性外泌体作为信息传递的介质,广泛参与结直肠癌转移前微环境形成的各个环节。深入研究外泌体在转移前微环境形成中的机制,可为结直肠癌的靶向治疗和预测肿瘤进展提供新的思路。
陈洁, 徐红, 陈雨甜. 肿瘤细胞源性外泌体在结直肠癌转移前微环境形成中的作用[J]. 国际肿瘤学杂志, 2024, 51(10): 650-654.
Chen Jie, Xu Hong, Chen Yutian. Role of tumor cell-derived exosomes in the pre-metastatic niche formation in colorectal cancer[J]. Journal of International Oncology, 2024, 51(10): 650-654.
[1] | 郑荣寿, 陈茹, 韩冰峰, 等. 2022年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2024, 46(3): 221-231. DOI: 10.3760/cma.j.cn112152-20240119-00035. |
[2] |
Herath S, Razavi Bazaz S, Monkman J, et al. Circulating tumor cell clusters: insights into tumour dissemination and metastasis[J]. Expert Rev Mol Diagn, 2020, 20(11): 1139-1147. DOI: 10.1080/14737159.2020.1846523.
pmid: 33140979 |
[3] |
Doglioni G, Parik S, Fendt SM. Interactions in the (Pre)metastatic niche support metastasis formation[J]. Front Oncol, 2019, 9: 219. DOI: 10.3389/fonc.2019.00219.
pmid: 31069166 |
[4] | Titu S, Gata VA, Decea RM, et al. Exosomes in colorectal cancer: from physiology to clinical applications[J]. Int J Mol Sci, 2023, 24(5): 4382. DOI: 10.3390/ijms24054382. |
[5] | Liu C, Xia C, Xia C. Biology and function of exosomes in tumor immunotherapy[J]. Biomed Pharmacother, 2023, 169: 115853. DOI: 10.1016/j.biopha.2023.115853. |
[6] | Tian Y, Cheng C, Wei Y, et al. The role of exosomes in inflammatory diseases and tumor-related inflammation[J]. Cells, 2022, 11(6): 1005. DOI: 10.3390/cells11061005. |
[7] | Hoshino A, Costa-Silva B, Shen TL, et al. Tumour exosome integrins determine organotropic metastasis[J]. Nature, 2015, 527(7578): 329-335. DOI: 10.1038/nature15756. |
[8] | Li S, Qu Y, Liu L, et al. Tumour-derived exosomes in liver metastasis: a pandora's box[J]. Cell Prolif, 2023, 56(10): e13452. DOI: 10.1111/cpr.13452. |
[9] |
Ji Q, Zhou L, Sui H, et al. Primary tumors release ITGBL1-rich extracellular vesicles to promote distal metastatic tumor growth through fibroblast-niche formation[J]. Nat Commun, 2020, 11(1): 1211. DOI: 10.1038/s41467-020-14869-x.
pmid: 32139701 |
[10] | Wang C, Tsai S. Regulation of lymphangiogenesis by extracellular vesicles in cancer metastasis[J]. Exp Biol Med (Maywood), 2021, 246(19): 2048-2056. DOI: 10.1177/15353702211021022. |
[11] |
Sun B, Zhou Y, Fang Y, et al. Colorectal cancer exosomes induce lymphatic network remodeling in lymph nodes[J]. Int J Cancer, 2019, 145(6): 1648-1659. DOI: 10.1002/ijc.32196.
pmid: 30734278 |
[12] | Hu H, Yu C, Zhang H, et al. Exosomal miR-1229 derived from colorectal cancer cells promotes angiogenesis by targeting HIPK2[J]. Int J Biol Macromol, 2019, 132: 470-477. DOI: 10.1016/j.ijbiomac.2019.03.221. |
[13] |
He Q, Ye A, Ye W, et al. Cancer-secreted exosomal miR-21-5p induces angiogenesis and vascular permeability by targeting KRIT1[J]. Cell Death Dis, 2021, 12(6): 576. DOI: 10.1038/s41419-021-03803-8.
pmid: 34088891 |
[14] | Dokhanchi M, Pakravan K, Zareian S, et al. Colorectal cancer cell-derived extracellular vesicles transfer miR-221-3p to promote endothelial cell angiogenesis via targeting suppressor of cytokine signaling 3[J]. Life Sci, 2021, 285: 119937. DOI: 10.1016/j.lfs.2021.119937. |
[15] | Shang A, Wang X, Gu C, et al. Exosomal miR-183-5p promotes angiogenesis in colorectal cancer by regulation of FOXO1[J]. Aging (Albany NY), 2020, 12(9): 8352-8371. DOI: 10.18632/aging.103145. |
[16] |
Chen C, Liu Y, Liu L, et al. Exosomal circTUBGCP4 promotes vascular endothelial cell tipping and colorectal cancer metastasis by activating Akt signaling pathway[J]. J Exp Clin Cancer Res, 2023, 42(1): 46. DOI: 10.1186/s13046-023-02619-y.
pmid: 36793126 |
[17] |
Hu G, Lin C, Gao K, et al. Exosomal circCOL1A1 promotes angiogenesis via recruiting EIF4A3 protein and activating Smad2/3 pathway in colorectal cancer[J]. Mol Med, 2023, 29(1): 155. DOI: 10.1186/s10020-023-00747-x.
pmid: 37940881 |
[18] |
Li Y, Jiang D, Zhang Z, et al. Colorectal cancer cell-secreted exosomal miRNA N-72 promotes tumor angiogenesis by targeting CLDN18[J]. Am J Cancer Res, 2023, 13(8): 3482-3499.
pmid: 37693144 |
[19] |
Dou R, Liu K, Yang C, et al. EMT-cancer cells-derived exosomal miR-27b-3p promotes circulating tumour cells-mediated metastasis by modulating vascular permeability in colorectal cancer[J]. Clin Transl Med, 2021, 11(12): e595. DOI: 10.1002/ctm2.595.
pmid: 34936736 |
[20] |
Jiang K, Chen H, Fang Y, et al. Exosomal ANGPTL1 attenuates colorectal cancer liver metastasis by regulating Kupffer cell secretion pattern and impeding MMP9 induced vascular leakiness[J]. J Exp Clin Cancer Res, 2021, 40(1): 21. DOI: 10.1186/s13046-020-01816-3.
pmid: 33413536 |
[21] | Zhao S, Mi Y, Guan B, et al. Tumor-derived exosomal miR-934 induces macrophage M2 polarization to promote liver metastasis of colorectal cancer[J]. J Hematol Oncol, 2020, 13(1): 156. DOI: 10.1186/s13045-020-00991-2. |
[22] | Chen C, Yao X, Xu Y, et al. Dahuang zhechong pill suppresses colorectal cancer liver metastasis via ameliorating exosomal CCL2 primed pre-metastatic niche[J]. J Ethnopharmacol, 2019, 238: 111878. DOI: 10.1016/j.jep.2019.111878. |
[23] | Liang Z, Liu H, Wang F, et al. LncRNA RPPH1 promotes colorectal cancer metastasis by interacting with TUBB3 and by promoting exosomes-mediated macrophage M2 polarization[J]. Cell Death Dis, 2019, 10(11): 829. DOI: 10.1038/s41419-019-2077-0. |
[24] |
Wang D, Wang X, Si M, et al. Exosome-encapsulated miRNAs contribute to CXCL12/CXCR4-induced liver metastasis of colorectal cancer by enhancing M2 polarization of macrophages[J]. Cancer Lett, 2020, 474: 36-52. DOI: 10.1016/j.canlet.2020.01.005.
pmid: 31931030 |
[25] | Pei W, Wei K, Wu Y, et al. Colorectal cancer tumor cell-derived exosomal miR-203a-3p promotes CRC metastasis by targeting PTEN-induced macrophage polarization[J]. Gene, 2023, 885: 147692. DOI: 10.1016/j.gene.2023.147692. |
[26] |
Furumaya C, Martinez-Sanz P, Bouti P, et al. Plasticity in pro- and anti-tumor activity of neutrophils: shifting the balance[J]. Front Immunol, 2020, 11: 2100. DOI: 10.3389/fimmu.2020.02100.
pmid: 32983165 |
[27] | Shang A, Gu C, Wang W, et al. Exosomal circPACRGL promotes progression of colorectal cancer via the miR-142-3p/miR-506-3p-TGF-β1 axis[J]. Mol Cancer, 2020, 19(1): 117. DOI: 10.1186/s12943-020-01235-0. |
[28] | Sun H, Meng Q, Shi C, et al. Hypoxia-inducible exosomes facilitate liver-tropic premetastatic niche in colorectal cancer[J]. Hepatology, 2021, 74(5): 2633-2651. DOI: 10.1002/hep.32009. |
[29] |
Huang Y, Luo Y, Ou W, et al. Exosomal lncRNA SNHG10 derived from colorectal cancer cells suppresses natural killer cell cytotoxicity by upregulating INHBC[J]. Cancer Cell Int, 2021, 21(1): 528. DOI: 10.1186/s12935-021-02221-2.
pmid: 34641864 |
[30] |
Hu X, Lin Z, Wang Z, et al. Emerging role of PD-L1 modification in cancer immunotherapy[J]. Am J Cancer Res, 2021, 11(8): 3832-3840.
pmid: 34522452 |
[31] | Xian D, Niu L, Zeng J, et al. LncRNA KCNQ1OT1 secreted by tumor cell-derived exosomes mediates immune escape in colorectal cancer by regulating PD-L1 ubiquitination via miR-30a-5p/USP22[J]. Front Cell Dev Biol, 2021, 9: 653808. DOI: 10.3389/fcell.2021.653808. |
[32] |
Sun W, Cui J, Ge Y, et al. Tumor stem cell-derived exosomal microRNA-17-5p inhibits anti-tumor immunity in colorectal cancer via targeting SPOP and overexpressing PD-L1[J]. Cell Death Discov, 2022, 8(1): 223. DOI: 10.1038/s41420-022-00919-4.
pmid: 35461336 |
[33] |
Poggio M, Hu TY, Pai CC, et al. Suppression of exosomal PD-L1 induces systemic anti-tumor immunity and memory[J]. Cell, 2019, 177(2): 414-427.e13. DOI: 10.1016/j.cell.2019.02.016.
pmid: 30951669 |
[34] |
Yuan Z, Li Y, Zhang S, et al. Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments[J]. Mol Cancer, 2023, 22(1): 48. DOI: 10.1186/s12943-023-01744-8.
pmid: 36906534 |
[35] | Tian F, Wang P, Lin D, et al. Exosome-delivered miR-221/222 exacerbates tumor liver metastasis by targeting SPINT1 in colorectal cancer[J]. Cancer Sci, 2021, 112(9): 3744-3755. DOI: 10.1111/cas.15028. |
[36] | Kamerkar S, Leng C, Burenkova O, et al. Exosome-mediated genetic reprogramming of tumor-associated macrophages by exoASO-STAT6 leads to potent monotherapy antitumor activity[J]. Sci Adv, 2022, 8(7): eabj7002. DOI: 10.1126/sciadv.abj7002. |
[1] | 韦伟, 蔡曌颖, 钱亚云. 通关藤联合XELOX方案促进人结直肠癌HCT116细胞双硫死亡的作用[J]. 国际肿瘤学杂志, 2024, 51(9): 545-555. |
[2] | 詹海峰, 王文学, 耿嘉蔚. 晚期结直肠癌精准分子靶向治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(9): 601-605. |
[3] | 李志伟, 翟春宝. 中药多酚类成分抗结直肠癌作用研究进展[J]. 国际肿瘤学杂志, 2024, 51(8): 526-531. |
[4] | 孟繁明. 伊尼妥单抗联合卡培他滨治疗曲妥珠单抗经治的HER2阳性晚期乳腺癌1例[J]. 国际肿瘤学杂志, 2024, 51(8): 538-541. |
[5] | 刘琴, 张强强, 杨继元, 胡艳. 晚期前列腺癌双侧乳腺和腋窝淋巴结转移1例[J]. 国际肿瘤学杂志, 2024, 51(7): 478-480. |
[6] | 王盈, 刘楠, 郭兵. 抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[7] | 张蕊, 褚衍六. 基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[8] | 高凡, 王萍, 杜超, 褚衍六. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[9] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝. 癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
[10] | 傅旖, 马辰莺, 张露, 周菊英. 生境分析在恶性肿瘤影像组学中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(5): 292-297. |
[11] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙. 肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. |
[12] | 李书月, 马辰莺, 周菊英, 徐晓婷, 秦颂兵. 寡转移非小细胞肺癌的放疗进展[J]. 国际肿瘤学杂志, 2024, 51(3): 170-174. |
[13] | 刘博翰, 黄俊星. 液体活检技术在食管鳞状细胞癌中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 105-108. |
[14] | 孙国宝, 杨倩, 庄庆春, 高斌斌, 孙晓刚, 宋伟, 沙丹. 结直肠癌肝转移组织病理学生长方式研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 114-118. |
[15] | 何佩霈, 杨朝凤, 李杨. 肝癌肿瘤微环境与消融治疗的研究现状与展望[J]. 国际肿瘤学杂志, 2024, 51(10): 655-659. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||