| [1] | 
																						 
											  Siegel RL, Miller KD, Goding Sauer A, et al. Colorectal cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(3): 145-164. DOI: 10.3322/caac.21601.
											 											 | 
										
																													
																						| [2] | 
																						 
											  Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
											 											 | 
										
																													
																						| [3] | 
																						 
											  Yang L, Yang JL, Kleppe A, et al. Personalizing adjuvant therapy for patients with colorectal cancer[J]. Nat Rev Clin Oncol, 2024, 21(1): 67-79. DOI: 10.1038/s41571-023-00834-2.
											 											 | 
										
																													
																						| [4] | 
																						 
											  Adebayo AS, Agbaje K, Adesina SK, et al. Colorectal cancer: disease process, current treatment options, and future perspectives[J]. Pharmaceutics, 2023, 15(11): 2620. DOI: 10.3390/pharmaceutics15112620.
											 											 | 
										
																													
																						| [5] | 
																						 
											  Paul S, Roy D, Pati S, et al. The adroitness of andrographolide as a natural weapon against colorectal cancer[J]. Front Pharmacol, 2021, 12: 731492. DOI: 10.3389/fphar.2021.731492.
											 											 | 
										
																													
																						| [6] | 
																						 
											  Mirazimi SMA, Dashti F, Tobeiha M, et al. Application of quercetin in the treatment of gastrointestinal cancers[J]. Front Pharmacol, 2022, 13: 860209. DOI: 10.3389/fphar.2022.860209.
											 											 | 
										
																													
																						| [7] | 
																						 
											  Boonruang K, Kim I, Kwag C, et al. Quercetin induces dual specificity phosphatase 5 via serum response factor[J]. BMB Rep, 2023, 56(9): 508-513. DOI: 10.5483/BMBRep.2023-0051. 
											 												 
																																					pmid: 37291053
																							 											 | 
										
																													
																						| [8] | 
																						 
											  Fosso E, Leo M, Muccillo L, et al. Quercetin's dual mode of action to counteract the Sp1-miR-27a axis in colorectal cancer cells[J]. Antioxidants, 2023, 12(8): 1547. DOI: 10.3390/antiox12081547.
											 											 | 
										
																													
																						| [9] | 
																						 
											  Trinh NT, Nguyen TMN, Yook JI, et al. Quercetin and quercitrin from agrimonia pilosa ledeb inhibit the migration and invasion of colon cancer cells through the JNK signaling pathway[J]. Pharmaceuticals (Basel), 2022, 15(3): 364. DOI: 10.3390/ph15030364.
											 											 | 
										
																													
																						| [10] | 
																						 
											  Choudhari SK, Chaudhary M, Bagde S, et al. Nitric oxide and cancer: a review[J]. World J Surg Oncol, 2013, 11: 118. DOI: 10.1186/1477-7819-11-118. 
											 												 
																																					pmid: 23718886
																							 											 | 
										
																													
																						| [11] | 
																						 
											  Tanomrat R, Naktubtim C, Aimvijarn P, et al. N-acetylcysteine improves the inhibitory effect of quercetin-rich onion extract on HT-29 and HCT-116 colorectal cancer migration and invasion through iNOS suppression[J]. Int J Med Sci, 2023, 20(9): 1123-1134. DOI: 10.7150/ijms.86573. 
											 												 
																																					pmid: 37575276
																							 											 | 
										
																													
																						| [12] | 
																						 
											  Shree A, Islam J, Sultana S. Quercetin ameliorates reactive oxygen species generation, inflammation, mucus depletion, goblet disintegration, and tumor multiplicity in colon cancer: probable role of adenomatous polyposis coli, β-catenin[J]. Phytother Res, 2021, 35(4): 2171-2184. DOI: 10.1002/ptr.6969.
											 											 | 
										
																													
																						| [13] | 
																						 
											  王熙, 吴川清. 结直肠癌多药耐药逆转的研究进展[J]. 国际肿瘤学杂志, 2023, 50(1): 42-46. DOI: 10.3760/cma.j.cn371439-20220614-00008.
											 											 | 
										
																													
																						| [14] | 
																						 
											  Lee J, Jang CH, Kim Y, et al. Quercetin-induced glutathione depletion sensitizes colorectal cancer cells to oxaliplatin[J]. Foods, 2023, 12(8): 1733. DOI: 10.3390/foods12081733.
											 											 | 
										
																													
																						| [15] | 
																						 
											  林增海, 陆军, 王凯松. 槲皮素对5-FU诱导的结直肠癌SW480细胞耐药及自噬调控机制研究[J]. 陕西中医, 2021, 42(10): 1338-1343. DOI: 10.3969/j.issn.1000-7369.2021.10.004.
											 											 | 
										
																													
																						| [16] | 
																						 
											  Rawangkan A, Wongsirisin P, Namiki K, et al. Green tea catechin is an alternative immune checkpoint inhibitor that inhibits PD-L1 expression and lung tumor growth[J]. Molecules, 2018, 23(8): 2071. DOI: 10.3390/molecules23082071.
											 											 | 
										
																													
																						| [17] | 
																						 
											  Shin CM, Lee DH, Seo AY, et al. Green tea extracts for the prevention of metachronous colorectal polyps among patients who underwent endoscopic removal of colorectal adenomas: a randomi-zed clinical trial[J]. Clin Nutr, 2018, 37(2): 452-458. DOI: 10.1016/j.clnu.2017.01.014.
											 											 | 
										
																													
																						| [18] | 
																						 
											  Luo KW, Xia J, Cheng BH, et al. Tea polyphenol EGCG inhibited colorectal-cancer-cell proliferation and migration via downregulation of STAT3[J]. Gastroenterol Rep (Oxf), 2020, 9(1): 59-70. DOI: 10.1093/gastro/goaa072.
											 											 | 
										
																													
																						| [19] | 
																						 
											  Khiewkamrop P, Surangkul D, Srikummool M, et al. Epigallocate-chin gallate triggers apoptosis by suppressing de novo lipogenesis in colorectal carcinoma cells[J]. FEBS Open Bio, 2022, 12(5): 937-958. DOI: 10.1002/2211-5463.13391. 
											 												 
																																					pmid: 35243817
																							 											 | 
										
																													
																						| [20] | 
																						 
											  Ricoult SJH, Yecies JL, Ben-Sahra I, et al. Oncogenic PI3K and K-Ras stimulate de novo lipid synthesis through mTORC1 and SREBP[J]. Oncogene, 2016, 35(10): 1250-1260. DOI: 10.1038/onc.2015.179. 
											 												 
																																					pmid: 26028026
																							 											 | 
										
																													
																						| [21] | 
																						 
											  Wu W, Dong J, Gou H, et al. EGCG synergizes the therapeutic effect of irinotecan through enhanced DNA damage in human colorectal cancer cells[J]. J Cell Mol Med, 2021, 25(16): 7913-7921. DOI: 10.1111/jcmm.16718. 
											 												 
																																					pmid: 34132471
																							 											 | 
										
																													
																						| [22] | 
																						 
											  La X, Zhang L, Li Z, et al. (-)-Epigallocatechin gallate(EGCG)enhances the sensitivity of colorectal cancer cells to 5-FU by inhibiting GRP78/NF-κB/miR-155-5p/MDR1 pathway[J]. J Agric Food Chem, 2019, 67(9): 2510-2518. DOI: 10.1021/acs.jafc.8b06665.
											 											 | 
										
																													
																						| [23] | 
																						 
											  Koushki M, Amiri-Dashatan N, Ahmadi N, et al. Resveratrol: a miraculous natural compound for diseases treatment[J]. Food Sci Nutr, 2018, 6(8): 2473-2490. DOI: 10.1002/fsn3.855. 
											 												 
																																					pmid: 30510749
																							 											 | 
										
																													
																						| [24] | 
																						 
											  Brockmueller A, Buhrmann C, Moravejolahkami AR, et al. Resveratrol and p53: how are they involved in CRC plasticity and apoptosis?[J]. J Adv Res, 2024. In press. DOI: 10.1016/j.jare.2024.01.005.
											 											 | 
										
																													
																						| [25] | 
																						 
											  Wang N, Gao EG, Cui CX, et al. The combined anticancer of peanut skin procyanidins and resveratrol to CACO-2 colorectal cancer cells[J]. Food Sci Nutr, 2023, 11(10): 6483-6497. DOI: 10.1002/fsn3.3590. 
											 												 
																																					pmid: 37831732
																							 											 | 
										
																													
																						| [26] | 
																						 
											  Kim N, Kwon J, Shin US, et al. Stimulatory anticancer effect of resveratrol mediated by G protein-coupled estrogen receptor in colorectal cancer[J]. Biomol Ther (Seoul), 2023, 31(6): 655-660. DOI: 10.4062/biomolther.2023.072.
											 											 | 
										
																													
																						| [27] | 
																						 
											  Brockmueller A, Buhrmann C, Shayan P, et al. Resveratrol induces apoptosis by modulating the reciprocal crosstalk between p53 and Sirt-1 in the CRC tumor microenvironment[J]. Front Immunol, 2023, 14: 1225530. DOI: 10.3389/fimmu.2023.1225530.
											 											 | 
										
																													
																						| [28] | 
																						 
											  任珊, 杨寒, 刘茂伦, 等. 白藜芦醇通过调控Notch信号通路诱导结直肠癌HCT116细胞凋亡的研究[J]. 中药药理与临床, 2023, 39(1): 37-43. DOI: 10.13412/j.cnki.zyyl.2023.01.002.
											 											 | 
										
																													
																						| [29] | 
																						 
											  Dana P, Thumrongsiri N, Tanyapanyachon P, et al. Resveratrol loaded liposomes disrupt cancer associated fibroblast communications within the tumor microenvironment to inhibit colorectal cancer aggressiveness[J]. Nanomaterials, 2022, 13(1): 107. DOI: 10.3390/nano13010107.
											 											 | 
										
																													
																						| [30] | 
																						 
											  Brockmueller A, Mueller AL, Shayan P, et al. β1-Integrin plays a major role in resveratrol-mediated anti-invasion effects in the CRC microenvironment[J]. Front Pharmacol, 2022, 13: 978625. DOI: 10.3389/fphar.2022.978625.
											 											 | 
										
																													
																						| [31] | 
																						 
											  Brockmueller A, Girisa S, Kunnumakkara AB, et al. Resveratrol modulates chemosensitisation to 5-FU via β1-Integrin/HIF-1α axis in CRC tumor microenvironment[J]. Int J Mol Sci, 2023, 24(5): 4988. DOI: 10.3390/ijms24054988.
											 											 | 
										
																													
																						| [32] | 
																						 
											  王丽, 庞静, 沈慧, 等. 白藜芦醇通过EGFR/AKT/mTOR通路改善结直肠癌细胞伊立替康化疗耐药性[J]. 中国药理学通报, 2023, 39(12): 2280-2287. DOI: 10.12360/CPB202303020.
											 											 | 
										
																													
																						| [33] | 
																						 
											  Weng WH, Goel A. Curcumin and colorectal cancer: an update and current perspective on this natural medicine[J]. Semin Cancer Biol, 2022, 80: 73-86. DOI: 10.1016/j.semcancer.2020.02.011.
											 											 | 
										
																													
																						| [34] | 
																						 
											  Liu C, Rokavec M, Huang ZK, et al. Curcumin activates a ROS/KEAP1/NRF2/miR-34a/b/c cascade to suppress colorectal cancer metastasis[J]. Cell Death Differ, 2023, 30(7): 1771-1785. DOI: 10.1038/s41418-023-01178-1. 
											 												 
																																					pmid: 37210578
																							 											 | 
										
																													
																						| [35] | 
																						 
											  Xu W, Shen Y. Curcumin affects apoptosis of colorectal cancer cells through ATF6-mediated endoplasmic reticulum stress[J]. Chem Biol Drug Des, 2024, 103(1): e14433. DOI: 10.1111/cbdd.14433.
											 											 | 
										
																													
																						| [36] | 
																						 
											  Chen S, Li W, Ning CG, et al. Hsa_circ_0136666 mediates the antitumor effect of curcumin in colorectal carcinoma by regulating CXCL1 via miR-1301-3p[J]. World J Gastrointest Oncol, 2023, 15(12): 2120-2137. DOI: 10.4251/wjgo.v15.i12.2120.
											 											 | 
										
																													
																						| [37] | 
																						 
											  Wang YH, Zhang ZY, Sun WC, et al. Ferroptosis in colorectal cancer: potential mechanisms and effective therapeutic targets[J]. Biomed Pharmacother, 2022, 153: 113524. DOI: 10.1016/j.biopha.2022.113524.
											 											 | 
										
																													
																						| [38] | 
																						 
											  Miyazaki K, Xu CM, Shimada M, et al. Curcumin and andrographis exhibit anti-tumor effects in colorectal cancer via activation of ferroptosis and dual suppression of glutathione peroxidase-4 and ferroptosis suppressor protein-1[J]. Pharmaceuticals (Basel), 2023, 16(3): 383. DOI: 10.3390/ph16030383.
											 											 | 
										
																													
																						| [39] | 
																						 
											  Chen M, Tan AH, Li J. Curcumin represses colorectal cancer cell proliferation by triggering ferroptosis via PI3K/Akt/mTOR signaling[J]. Nutr Cancer, 2023, 75(2): 726-733. DOI: 10.1080/01635581.2022.2139398.
											 											 | 
										
																													
																						| [40] | 
																						 
											  Lu Y, Zhang RZ, Zhang XJ, et al. Curcumin may reverse 5-fluorouracil resistance on colonic cancer cells by regulating TET1-NKD-Wnt signal pathway to inhibit the EMT progress[J]. Biomed Pharmacother, 2020, 129: 110381. DOI: 10.1016/j.biopha.2020.110381. 
											 												 
																																					pmid: 32887024
																							 											 |