国际肿瘤学杂志 ›› 2022, Vol. 49 ›› Issue (10): 615-618.doi: 10.3760/cma.j.cn371439-20220614-00122
收稿日期:
2022-06-14
修回日期:
2022-08-14
出版日期:
2022-10-08
发布日期:
2022-12-01
通讯作者:
孙秀梅
E-mail:sunxiumei8666@126.com
基金资助:
Wang Wenhao1,2, Sun Xirui1, Liu Jin1, Sun Xiumei1()
Received:
2022-06-14
Revised:
2022-08-14
Online:
2022-10-08
Published:
2022-12-01
Contact:
Sun Xiumei
E-mail:sunxiumei8666@126.com
Supported by:
摘要:
近年来的研究表明,肿瘤微环境相较正常组织明显不同,如酶表达异常、缺氧、pH改变等。肿瘤微环境与肿瘤细胞的诱导增殖、新生血管的生成、免疫逃逸以及多药耐药的产生息息相关。肿瘤相关成纤维细胞(CAF)是肿瘤微环境中的主要基质细胞类型,其分泌的多种细胞因子在肿瘤的生长、侵袭和转移中起到了重要的作用。了解CAF在乳腺癌发生发展中的作用及其机制,有望为改善乳腺癌患者的预后提供新的作用靶点。
王文浩, 孙希瑞, 刘锦, 孙秀梅. 肿瘤相关成纤维细胞在乳腺癌发生与发展中的作用[J]. 国际肿瘤学杂志, 2022, 49(10): 615-618.
Wang Wenhao, Sun Xirui, Liu Jin, Sun Xiumei. Role of cancer-associated fibroblasts in the development and progression of breast cancer[J]. Journal of International Oncology, 2022, 49(10): 615-618.
[1] |
Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1): 7-33. DOI: 10.3322/caac.21654.
doi: 10.3322/caac.21654 |
[2] |
王爱玲, 牛喜梅, 黄国福, 等. 肿瘤相关成纤维细胞在乳腺癌中的作用[J]. 国际肿瘤学杂志, 2021, 48(10): 614-617. DOI: 10.3760/cma.j.cn371439-20201208-00120.
doi: 10.3760/cma.j.cn371439-20201208-00120 |
[3] |
Deepak KGK, Vempati R, Nagaraju GP, et al. Tumor microenvironment: challenges and opportunities in targeting metastasis of triple negative breast cancer[J]. Pharmacol Res, 2020, 153: 104683. DOI: 10.1016/j.phrs.2020.104683.
doi: 10.1016/j.phrs.2020.104683 |
[4] |
Mehraj U, Dar AH, Wani NA, et al. Tumor microenvironment promotes breast cancer chemoresistance[J]. Cancer Chemother Pharmacol, 2021, 87(2): 147-158. DOI: 10.1007/s00280-020-04222-w.
doi: 10.1007/s00280-020-04222-w |
[5] |
毕恺欣, 张亚芬, 郝语晨, 等. 肿瘤相关成纤维细胞在乳腺癌中的研究进展[J]. 肿瘤研究与临床, 2021, 33(3): 233-236. DOI: 10.3760/cma.j.cn115355-20200218-00060.
doi: 10.3760/cma.j.cn115355-20200218-00060 |
[6] |
Suh J, Kim DH, Lee YH, et al. Fibroblast growth factor-2, derived from cancer-associated fibroblasts, stimulates growth and progression of human breast cancer cells via FGFR1 signaling[J]. Mol Carcinog, 2020, 59(9): 1028-1040. DOI: 10.1002/mc.23233.
doi: 10.1002/mc.23233 |
[7] |
Demircioglu F, Wang J, Candido J, et al. Cancer associated fibroblast FAK regulates malignant cell metabolism[J]. Nat Commun, 2020, 11(1): 1290. DOI: 10.1038/s41467-020-15104-3.
doi: 10.1038/s41467-020-15104-3 pmid: 32157087 |
[8] |
Becker LM, O'Connell JT, Vo AP, et al. Epigenetic reprogramming of cancer-associated fibroblasts deregulates glucose metabolism and facilitates progression of breast cancer[J]. Cell Rep, 2020, 31(9): 107701. DOI: 10.1016/j.celrep.2020.107701.
doi: 10.1016/j.celrep.2020.107701 |
[9] |
于彪, 刘晴, 吴晓明. SDF-1/CXCR4在肿瘤相关成纤维细胞中的作用[J]. 基础医学与临床, 2020, 40(9): 1256-1260. DOI: 10.16352/j.issn.1001-6325.2020.09.023.
doi: 10.16352/j.issn.1001-6325.2020.09.023 |
[10] |
Houthuijzen JM, Jonkers J. Cancer-associated fibroblasts as key regulators of the breast cancer tumor microenvironment[J]. Cancer Metastasis Rev, 2018, 37(4): 577-597. DOI: 10.1007/s10555-018-9768-3.
doi: 10.1007/s10555-018-9768-3 |
[11] |
Erdogan B, Webb DJ. Cancer-associated fibroblasts modulate growth factor signaling and extracellular matrix remodeling to regulate tumor metastasis[J]. Biochem Soc Trans, 2017, 45(1): 229-236. DOI: 10.1042/BST20160387.
doi: 10.1042/BST20160387 |
[12] |
Ren J, Smid M, Iaria J, et al. Cancer-associated fibroblast-derived Gremlin 1 promotes breast cancer progression[J]. Breast Cancer Res, 2019, 21(1): 109. DOI: 10.1186/s13058-019-1194-0.
doi: 10.1186/s13058-019-1194-0 pmid: 31533776 |
[13] |
Eckhardt BL, Cao Y, Redfern AD, et al. Activation of canonical BMP4-SMAD7 signaling suppresses breast cancer metastasis[J]. Cancer Res, 2020, 80(6): 1304-1315. DOI: 10.1158/0008-5472.CAN-19-0743.
doi: 10.1158/0008-5472.CAN-19-0743 pmid: 31941699 |
[14] |
Insua-Rodríguez J, Oskarsson T. The extracellular matrix in breast cancer[J]. Adv Drug Deliv Rev, 2016, 97: 41-55. DOI: 10.1016/j.addr.2015.12.017.
doi: 10.1016/j.addr.2015.12.017 |
[15] |
Hong JT, Son DJ, Lee CK, et al. Interleukin 32, inflammation and cancer[J]. Pharmacol Ther, 2017, 174: 127-137. DOI: 10.1016/j.pharmthera.2017.02.025.
doi: 10.1016/j.pharmthera.2017.02.025 |
[16] |
Sloot YJE, Smit JW, Joosten LAB, et al. Insights into the role of IL-32 in cancer[J]. Semin Immunol, 2018, 38: 24-32. DOI: 10.1016/j.smim.2018.03.004.
doi: S1044-5323(17)30079-9 pmid: 29747940 |
[17] |
Wen S, Hou Y, Fu L, et al. Cancer-associated fibroblast (CAF)-derived IL32 promotes breast cancer cell invasion and metastasis via integrin β3-p38 MAPK signalling[J]. Cancer Lett, 2019, 442: 320-332. DOI: 10.1016/j.canlet.2018.10.015.
doi: S0304-3835(18)30629-3 pmid: 30391782 |
[18] |
Ershaid N, Sharon Y, Doron H, et al. NLRP3 inflammasome in fibroblasts links tissue damage with inflammation in breast cancer progression and metastasis[J]. Nat Commun, 2019, 10(1): 4375. DOI: 10.1038/s41467-019-12370-8.
doi: 10.1038/s41467-019-12370-8 pmid: 31558756 |
[19] |
Shani O, Vorobyov T, Monteran L, et al. Fibroblast-derived IL33 facilitates breast cancer metastasis by modifying the immune microenvironment and driving type 2 immunity[J]. Cancer Res, 2020, 80(23): 5317-5329. DOI: 10.1158/0008-5472.CAN-20-2116.
doi: 10.1158/0008-5472.CAN-20-2116 pmid: 33023944 |
[20] |
Barrett RL, Puré E. Cancer-associated fibroblasts and their influence on tumor immunity and immunotherapy[J]. Elife, 2020, 9: e57243. DOI: 10.7554/eLife.57243.
doi: 10.7554/eLife.57243 |
[21] |
Kieffer Y, Hocine HR, Gentric G, et al. Single-cell analysis reveals fibroblast clusters linked to immunotherapy resistance in cancer[J]. Cancer Discov, 2020, 10(9): 1330-1351. DOI: 10.1158/2159-8290.CD-19-1384.
doi: 10.1158/2159-8290.CD-19-1384 pmid: 32434947 |
[22] |
Costa A, Kieffer Y, Scholer-Dahirel A, et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer[J]. Cancer Cell, 2018, 33(3): 463-479.e10. DOI: 10.1016/j.ccell.2018.01.011.
doi: S1535-6108(18)30011-4 pmid: 29455927 |
[23] |
Monteran L, Erez N. The dark side of fibroblasts: cancer-associated fibroblasts as mediators of immunosuppression in the tumor microenvironment[J]. Front Immunol, 2019, 10: 1835. DOI: 10.3389/fimmu.2019.01835.
doi: 10.3389/fimmu.2019.01835 pmid: 31428105 |
[24] |
Pinheiro PF, Justino GC, Marques MM. NKp30—a prospective target for new cancer immunotherapy strategies[J]. Br J Pharmacol, 2020, 177(20): 4563-4580. DOI: 10.1111/bph.15222.
doi: 10.1111/bph.15222 |
[25] |
Su S, Chen J, Yao H, et al. CD10+GPR77+ cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness[J]. Cell, 2018, 172(4): 841-856.e16. DOI: 10.1016/j.cell.2018.01.009.
doi: 10.1016/j.cell.2018.01.009 |
[26] |
Zhai L, Spranger S, Binder DC, et al. Molecular pathways: targeting IDO1 and other tryptophan dioxygenases for cancer immunotherapy[J]. Clin Cancer Res, 2015, 21(24): 5427-5433. DOI: 10.1158/1078-0432.CCR-15-0420.
doi: 10.1158/1078-0432.CCR-15-0420 pmid: 26519060 |
[27] |
Martinez-Outschoorn UE, Goldberg A, Lin Z, et al. Anti-estrogen resistance in breast cancer is induced by the tumor microenvironment and can be overcome by inhibiting mitochondrial function in epithelial cancer cells[J]. Cancer Biol Ther, 2011, 12(10): 924-938. DOI: 10.4161/cbt.12.10.17780.
doi: 10.4161/cbt.12.10.17780 pmid: 22041887 |
[28] |
Bu L, Baba H, Yasuda T, et al. Functional diversity of cancer-associated fibroblasts in modulating drug resistance[J]. Cancer Sci, 2020, 111(10): 3468-3477. DOI: 10.1111/cas.14578.
doi: 10.1111/cas.14578 |
[29] |
Chan YT, Lai AC, Lin RJ, et al. GPER-induced signaling is essential for the survival of breast cancer stem cells[J]. Int J Cancer, 2020, 146(6): 1674-1685. DOI: 10.1002/ijc.32588.
doi: 10.1002/ijc.32588 |
[30] |
Dou D, Ren X, Han M, et al. Cancer-associated fibroblasts-derived exosomes suppress immune cell function in breast cancer via the miR-92/PD-L1 pathway[J]. Front Immunol, 2020, 11: 2026. DOI: 10.3389/fimmu.2020.02026.
doi: 10.3389/fimmu.2020.02026 pmid: 33162971 |
[31] |
Sung JS, Kang CW, Kang S, et al. ITGB4-mediated metabolic reprogramming of cancer-associated fibroblasts[J]. Oncogene, 2020, 39(3): 664-676. DOI: 10.1038/s41388-019-1014-0.
doi: 10.1038/s41388-019-1014-0 pmid: 31534187 |
[32] |
Yang SS, Ma S, Dou H, et al. Breast cancer-derived exosomes regulate cell invasion and metastasis in breast cancer via miR-146a to activate cancer associated fibroblasts in tumor microenvironment[J]. Exp Cell Res, 2020, 391(2): 111983. DOI: 10.1016/j.yexcr.2020.111983.
doi: 10.1016/j.yexcr.2020.111983 |
[1] | 王盈, 刘楠, 郭兵. 抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[2] | 傅旖, 马辰莺, 张露, 周菊英. 生境分析在恶性肿瘤影像组学中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(5): 292-297. |
[3] | 萨蔷, 徐航程, 王佳玉. 乳腺癌免疫治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 227-234. |
[4] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙. 肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. |
[5] | 刘博翰, 黄俊星. 液体活检技术在食管鳞状细胞癌中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 105-108. |
[6] | 陈波光, 王苏贵, 张永杰. 血清胆碱酯酶与炎症标志物在ⅠA~ⅢA期乳腺癌预后中的作用[J]. 国际肿瘤学杂志, 2024, 51(2): 73-82. |
[7] | 刘筱迪, 苏剑飞, 张静娴, 卫雪芹, 贾英杰. 髓源性抑制细胞在肿瘤血管生成中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(1): 50-54. |
[8] | 顾花艳, 朱腾, 郭贵龙. 乳房微生物群与乳腺癌:现状与未来[J]. 国际肿瘤学杂志, 2024, 51(1): 55-58. |
[9] | 王景, 许文婷. 中性粒细胞与淋巴细胞比值、癌胚抗原联合凝血指标对直径≤1.0 cm的良恶性乳腺结节鉴别诊断价值研究[J]. 国际肿瘤学杂志, 2023, 50(9): 520-526. |
[10] | 冯诚天, 黄芙蓉, 曹世玉, 王健宇, 南丁阿比雅思, 姜永冬, 朱娟英. HER2阳性乳腺癌患者HER2表达水平与影像学特征的关系[J]. 国际肿瘤学杂志, 2023, 50(9): 527-531. |
[11] | 冯东旭, 吴炜, 高平发, 王军, 施丽娟, 陈大伟, 李文兵, 张美峰. miR-451通过调控Rho/ROCK1信号通路对乳腺癌细胞糖酵解及凋亡的影响[J]. 国际肿瘤学杂志, 2023, 50(8): 449-456. |
[12] | 张渊, 白芷玉, 李琪, 冯勤梅. 外泌体在恶性肿瘤中的研究现状[J]. 国际肿瘤学杂志, 2023, 50(8): 484-488. |
[13] | 王文德, 曾德. 乳腺癌内分泌治疗耐药的机制研究进展[J]. 国际肿瘤学杂志, 2023, 50(6): 352-356. |
[14] | 李青珊, 谢鑫, 张楠, 刘帅. 放疗联合系统治疗在乳腺癌中的应用进展[J]. 国际肿瘤学杂志, 2023, 50(6): 362-367. |
[15] | 许萌, 姜伟, 朱海涛, 曹雄锋. 癌相关成纤维细胞在肿瘤放疗抵抗中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(4): 227-230. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||