国际肿瘤学杂志 ›› 2021, Vol. 48 ›› Issue (5): 292-295.doi: 10.3760/cma.j.cn371439-20200629-00056
收稿日期:
2020-06-29
修回日期:
2020-11-08
出版日期:
2021-05-08
发布日期:
2021-06-09
通讯作者:
孙圣荣
E-mail:sun137@sina.com
Luo Lan, Chen Chuang, Li Xinqian, Sun Shengrong()
Received:
2020-06-29
Revised:
2020-11-08
Online:
2021-05-08
Published:
2021-06-09
Contact:
Sun Shengrong
E-mail:sun137@sina.com
摘要:
随着高通量测序等技术的应用,近年来研究发现,细菌不仅是乳腺炎等常见乳腺疾病的致病因素,还可能参与了乳腺癌的发生发展过程。乳腺内部组织中存在独特的细菌群落,它们的存在可能与乳腺癌的发病相关;近年研究发现,肠道菌群也可能通过调节雌激素等途径影响乳腺癌的患病率。进一步探索细菌对乳腺癌的影响,将为乳腺癌的诊断及治疗等提供新的思路。
罗澜, 陈创, 李昕倩, 孙圣荣. 细菌与乳腺癌的关系[J]. 国际肿瘤学杂志, 2021, 48(5): 292-295.
Luo Lan, Chen Chuang, Li Xinqian, Sun Shengrong. Relationship between bacteria and breast cancer[J]. Journal of International Oncology, 2021, 48(5): 292-295.
[1] |
Parida S, Sharma D. The power of small changes: comprehensive analyses of microbial dysbiosis in breast cancer[J]. Biochim Biophys Acta Rev Cancer, 2019,1871(2):392-405. DOI: 10.1016/j.bbcan.2019.04.001.
doi: 10.1016/j.bbcan.2019.04.001 |
[2] |
Bhatt AP, Redinbo MR, Bultman SJ. The role of the microbiome in cancer development and therapy[J]. CA Cancer J Clin, 2017,67(4):326-344. DOI: 10.3322/caac.21398.
doi: 10.3322/caac.v67.4 |
[3] |
Tsilimigras MC, Fodor A, Jobin C. Carcinogenesis and therapeutics: the microbiota perspective[J]. Nat Microbiol, 2017,2:17008. DOI: 10.1038/nmicrobiol.2017.8.
doi: 10.1038/nmicrobiol.2017.8 pmid: 28225000 |
[4] | 纪周新, 贺德. 微生物群与胰腺癌[J]. 国际肿瘤学杂志, 2020,47(1):46-50. DOI: 10.3760/cma.j.issn.1673-422X.2020.01.009. |
[5] |
Azevedo MM, Pina-Vaz C, Baltazar F. Microbes and cancer: friends or faux?[J]. Int J Mol Sci, 2020,21(9):3115. DOI: 10.3390/ijms21093115.
doi: 10.3390/ijms21093115 |
[6] |
Stewart OA, Wu F, Chen Y. The role of gastric microbiota in gastric cancer[J]. Gut Microbes, 2020,11(5):1220-1230. DOI: 10.1080/19490976.2020.1762520.
doi: 10.1080/19490976.2020.1762520 pmid: 32449430 |
[7] |
Urbaniak C, Cummins J, Brackstone M, et al. Microbiota of human breast tissue[J]. Appl Environ Microbiol, 2014,80(10):3007-3014. DOI: 10.1128/AEM.00242-14.
doi: 10.1128/AEM.00242-14 |
[8] |
Urbaniak C, Gloor GB, Brackstone M, et al. The microbiota of breast tissue and its association with breast cancer[J]. Appl Environ Microbiol, 2016,82(16):5039-5048. DOI: 10.1128/AEM.01235-16.
doi: 10.1128/AEM.01235-16 |
[9] |
Hieken TJ, Chen J, Hoskin TL, et al. The microbiome of aseptically collected human breast tissue in benign and malignant disease[J]. Sci Rep, 2016,6:30751. DOI: 10.1038/srep30751.
doi: 10.1038/srep30751 |
[10] | Kim M, Vogtmann E, Ahlquist DA, et al. Fecal metabolomic signatures in colorectal adenoma patients are associated with gut micro-biota and early events of colorectal cancer pathogenesis[J]. mBio, 2020,11(1):e03186-19. DOI: 10.1128/mBio.03186-19. |
[11] |
Markowski MC, Boorjian SA, Burton JP, et al. The microbiome and genitourinary cancer: a collaborative review[J]. Eur Urol, 2019,75(4):637-646. DOI: 10.1016/j.eururo.2018.12.043.
doi: 10.1016/j.eururo.2018.12.043 |
[12] |
Urbaniak C, Burton JP, Reid G. Breast, milk and microbes: a complex relationship that does not end with lactation[J]. Womens Health (Lond), 2012,8(4):385-398. DOI: 10.2217/whe.12.23.
doi: 10.2217/whe.12.23 pmid: 22757730 |
[13] |
Xuan C, Shamonki JM, Chung A, et al. Microbial dysbiosis is associated with human breast cancer[J]. PLoS One, 2014,9(1):e83744. DOI: 10.1371/journal.pone.0083744.
doi: 10.1371/journal.pone.0083744 |
[14] |
Pleguezuelos-Manzano C, Puschhof J, Huber A, et al. Mutational signature in colorectal cancer caused by genotoxic pks+E. coli[J]. Nature, 2020,580(7802):269-273. DOI: 10.1038/s41586-020-2080-8.
doi: 10.1038/s41586-020-2080-8 pmid: 32106218 |
[15] |
Banerjee S, Wei Z, Tan F, et al. Distinct microbiological signatures associated with triple negative breast cancer[J]. Sci Rep, 2015,5:15162. DOI: 10.1038/srep15162.
doi: 10.1038/srep15162 |
[16] |
Wang H, Altemus J, Niazi F, et al. Breast tissue, oral and urinary microbiomes in breast cancer[J]. Oncotarget, 2017,8(50):88122-88138. DOI: 10.18632/oncotarget.21490.
doi: 10.18632/oncotarget.v8i50 |
[17] |
Smith A, Pierre JF, Makowski L, et al. Distinct microbial communities that differ by race, stage, or breast-tumor subtype in breast tissues of non-Hispanic Black and non-Hispanic White women[J]. Sci Rep, 2019,9(1):11940. DOI: 10.1038/s41598-019-48348-1.
doi: 10.1038/s41598-019-48348-1 |
[18] |
Chiba A, Bawaneh A, Velazquez C, et al. Neoadjuvant chemo-therapy shifts breast tumor microbiota populations to regulate drug responsiveness and the development of metastasis[J]. Mol Cancer Res, 2020,18(1):130-139. DOI: 10.1158/1541-7786.MCR-19-0451.
doi: 10.1158/1541-7786.MCR-19-0451 |
[19] |
Meng S, Chen B, Yang J, et al. Study of microbiomes in aseptically collected samples of human breast tissue using needle biopsy and the potential role of in situ tissue microbiomes for promoting malignancy[J]. Front Oncol, 2018,8:318. DOI: 10.3389/fonc.2018.00318.
doi: 10.3389/fonc.2018.00318 |
[20] |
Chan AA, Bashir M, Rivas MN, et al. Characterization of the microbiome of nipple aspirate fluid of breast cancer survivors[J]. Sci Rep, 2016,6:28061. DOI: 10.1038/srep28061.
doi: 10.1038/srep28061 |
[21] |
Yazdi HR, Movafagh A, Fallah F, et al. Evaluation of methylobacterium radiotolerance and sphyngomonas yanoikoaie in sentinel lymph nodes of breast cancer cases[J]. Asian Pac J Cancer Prev, 2016,17(S3):279-285. DOI: 10.7314/apjcp.2016.17.s3.279.
doi: 10.7314/APJCP.2016.17.S3.279 |
[22] |
Guglielmi G. How gut microbes are joining the fight against cancer[J]. Nature, 2018,557(7706):482-484. DOI: 10.1038/d41586-018-05208-8.
doi: 10.1038/d41586-018-05208-8 pmid: 29795257 |
[23] | Shi J, Geng C, Sang M, et al. Effect of gastrointestinal microbiome and its diversity on the expression of tumor-infiltrating lymphocytes in breast cancer[J]. Oncol Lett, 2019,17(6):5050-5056. DOI: 10.3892/ol.2019.10187. |
[24] |
Guinter MA, McLain AC, Merchant AT, et al. A dietary pattern based on estrogen metabolism is associated with breast cancer risk in a prospective cohort of postmenopausal women[J]. Int J Cancer, 2018,143(3):580-590. DOI: 10.1002/ijc.31387.
doi: 10.1002/ijc.31387 pmid: 29574860 |
[25] |
Kovács T, Mikó E, Vida A, et al. Cadaverine, a metabolite of the microbiome, reduces breast cancer aggressiveness through trace amino acid receptors[J]. Sci Rep, 2019,9(1):1300. DOI: 10.1038/s41598-018-37664-7.
doi: 10.1038/s41598-018-37664-7 |
[26] |
Ingman WV. The gut microbiome: a new player in breast cancer metastasis[J]. Cancer Res, 2019,79(14):3539-3541. DOI: 10.1158/0008-5472.CAN-19-1698.
doi: 10.1158/0008-5472.CAN-19-1698 |
[27] | Sellitto A, D'Agostino Y, Alexandrova E, et al. Insights into the role of estrogen receptor β in triple-negative breast cancer[J]. Can-cers (Basel), 2020,12(6):1477. DOI: 10.3390/cancers-12061477. |
[28] |
Ferreira Almeida C, Oliveira A, João Ramos M, et al. Estrogen receptor-positive (ER+) breast cancer treatment: are multi-target compounds the next promising approach?[J]. Biochem Pharmacol, 2020,177:113989. DOI: 10.1016/j.bcp.2020.113989.
doi: 10.1016/j.bcp.2020.113989 |
[29] |
Fernández MF, Reina-Pérez I, Astorga JM, et al. Breast Cancer and its relationship with the microbiota[J]. Int J Environ Res Public Health, 2018,15(8):1747. DOI: 10.3390/ijerph15081747.
doi: 10.3390/ijerph15081747 |
[30] |
Singer-Englar T, Barlow G, Mathur R. Obesity, diabetes, and the gut microbiome: an updated review[J]. Expert Rev Gastroenterol Hepatol, 2019,13(1):3-15. DOI: 10.1080/17474124.2019.1543023.
doi: 10.1080/17474124.2019.1543023 pmid: 30791839 |
[31] |
Parida S, Sharma D. The microbiome-estrogen connection and breast cancer risk[J]. Cells, 2019,8(12):1642. DOI: 10.3390/cells8121642.
doi: 10.3390/cells8121642 |
[32] |
Pellegrini M, Ippolito M, Monge T, et al. Gut microbiota composition after diet and probiotics in overweight breast cancer survivors: a randomized open-label pilot intervention trial[J]. Nutrition, 2020,74:110749. DOI: 10.1016/j.nut.2020.110749.
doi: S0899-9007(20)30032-0 pmid: 32234652 |
[33] |
Bess EN, Bisanz JE, Yarza F, et al. Genetic basis for the cooperative bioactivation of plant lignans by Eggerthella lenta and other human gut bacteria[J]. Nat Microbiol, 2020,5(1):56-66. DOI: 10.1038/s41564-019-0596-1.
doi: 10.1038/s41564-019-0596-1 |
[34] |
Lakritz JR, Poutahidis T, Mirabal S, et al. Gut bacteria require neutrophils to promote mammary tumorigenesis[J]. Oncotarget, 2015,6(11):9387-9396. DOI: 10.18632/oncotarget.3328.
doi: 10.18632/oncotarget.v6i11 |
[35] |
Erdman SE, Poutahidis T. Gut bacteria and cancer[J]. Biochim Biophys Acta, 2015,1856(1):86-90. DOI: 10.1016/j.bbcan.2015.05.007.
doi: 10.1016/j.bbcan.2015.05.007 pmid: 26050963 |
[1] | 王盈, 刘楠, 郭兵. 抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[2] | 张蕊, 褚衍六. 基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[3] | 高凡, 王萍, 杜超, 褚衍六. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[4] | 萨蔷, 徐航程, 王佳玉. 乳腺癌免疫治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 227-234. |
[5] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙. 肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. |
[6] | 陈波光, 王苏贵, 张永杰. 血清胆碱酯酶与炎症标志物在ⅠA~ⅢA期乳腺癌预后中的作用[J]. 国际肿瘤学杂志, 2024, 51(2): 73-82. |
[7] | 顾花艳, 朱腾, 郭贵龙. 乳房微生物群与乳腺癌:现状与未来[J]. 国际肿瘤学杂志, 2024, 51(1): 55-58. |
[8] | 王景, 许文婷. 中性粒细胞与淋巴细胞比值、癌胚抗原联合凝血指标对直径≤1.0 cm的良恶性乳腺结节鉴别诊断价值研究[J]. 国际肿瘤学杂志, 2023, 50(9): 520-526. |
[9] | 冯诚天, 黄芙蓉, 曹世玉, 王健宇, 南丁阿比雅思, 姜永冬, 朱娟英. HER2阳性乳腺癌患者HER2表达水平与影像学特征的关系[J]. 国际肿瘤学杂志, 2023, 50(9): 527-531. |
[10] | 冯东旭, 吴炜, 高平发, 王军, 施丽娟, 陈大伟, 李文兵, 张美峰. miR-451通过调控Rho/ROCK1信号通路对乳腺癌细胞糖酵解及凋亡的影响[J]. 国际肿瘤学杂志, 2023, 50(8): 449-456. |
[11] | 过慈良, 江春平, 吴俊华. 肠道菌群与肿瘤免疫治疗[J]. 国际肿瘤学杂志, 2023, 50(7): 432-436. |
[12] | 王文德, 曾德. 乳腺癌内分泌治疗耐药的机制研究进展[J]. 国际肿瘤学杂志, 2023, 50(6): 352-356. |
[13] | 李青珊, 谢鑫, 张楠, 刘帅. 放疗联合系统治疗在乳腺癌中的应用进展[J]. 国际肿瘤学杂志, 2023, 50(6): 362-367. |
[14] | 吕璐, 孙鹏飞. 肠道菌群与宫颈癌[J]. 国际肿瘤学杂志, 2023, 50(6): 373-376. |
[15] | 朱军, 黄美金, 李媛, 刘泽刚, 荀欣, 陈宏. HER2低表达乳腺癌的靶向治疗研究进展[J]. 国际肿瘤学杂志, 2023, 50(4): 236-240. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||