国际肿瘤学杂志 ›› 2021, Vol. 48 ›› Issue (5): 296-301.doi: 10.3760/cma.j.cn371439-20210115-00057
收稿日期:
2021-01-15
修回日期:
2021-04-01
出版日期:
2021-05-08
发布日期:
2021-06-09
通讯作者:
万毅新
E-mail:wanyx1964@163.com
Wang Hui1, Xia Rong1, Wei Qingwen2, Wan Yixin1()
Received:
2021-01-15
Revised:
2021-04-01
Online:
2021-05-08
Published:
2021-06-09
Contact:
Wan Yixin
E-mail:wanyx1964@163.com
摘要:
免疫检查点抑制剂(ICI)的应用改变了非小细胞肺癌(NSCLC)的临床结局,随着ICI的广泛应用,与免疫相关的不良反应(irAE)也随之出现。免疫检查点抑制剂肺炎(CIP)为ICI治疗的严重不良事件,亟需引起临床医师的重视。因此,早期识别发生CIP的高危人群,尽早进行干预,可减少患者永久性停药、严重CIP的发生,从而改善患者预后。
王慧, 夏茸, 魏清雯, 万毅新. 非小细胞肺癌免疫检查点抑制剂相关性肺炎的危险因素及预测生物标志物[J]. 国际肿瘤学杂志, 2021, 48(5): 296-301.
Wang Hui, Xia Rong, Wei Qingwen, Wan Yixin. Risk factors and predictive biomarkers of immune checkpoint inhibitor-associated pneumonia in non-small cell lung cancer[J]. Journal of International Oncology, 2021, 48(5): 296-301.
[1] |
Hellmann MD, Rizvi NA, Goldman JW, et al. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1, multicohort study[J]. Lancet Oncol, 2017,18(1):31-41. DOI: 10.1016/s1470-2045(16)30624-6.
doi: 10.1016/S1470-2045(16)30624-6 |
[2] |
Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer[J]. N Engl J Med, 2015,373(2):123-135. DOI: 10.1056/NEJMoa1504627.
doi: 10.1056/NEJMoa1504627 |
[3] |
Suresh K, Psoter KJ, Voong KR, et al. Impact of checkpoint inhibitor pneumonitis on survival in NSCLC patients receiving immune checkpoint immunotherapy[J]. Thorac Oncol, 2019,14(3):494-502. DOI: 10.1016/j.jtho.2018.11.016.
doi: 10.1016/j.jtho.2018.11.016 |
[4] |
Ma K, Lu Y, Jiang S, et al. The relative risk and incidence of immune checkpoint inhibitors related pneumonitis in patients with advanced cancer: a meta-analysis[J]. Front Pharmacol, 2018,9:1430. DOI: 10.3389/fphar.2018.01430.
doi: 10.3389/fphar.2018.01430 |
[5] |
Rittmeyer A, Barlesi F, Waterkamp D, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial[J]. Lancet, 2017,389(10066):255-265. DOI: 10.1016/s0140-6736(16)32517-x.
doi: S0140-6736(16)32517-X pmid: 27979383 |
[6] |
Suresh K, Voong KR, Shankar B, et al. Pneumonitis in non-small cell lung cancer patients receiving immune checkpoint immunotherapy: incidence and risk factors[J]. J Thorac Oncol, 2018,13(12):1930-1939. DOI: 10.1016/j.jtho.2018.08.2035.
doi: 10.1016/j.jtho.2018.08.2035 |
[7] |
Cho JY, Kim J, Lee JS, et al. Characteristics, incidence, and risk factors of immune checkpoint inhibitor-related pneumonitis in patients with non-small cell lung cancer[J]. Lung Cancer, 2018,125:150-156. DOI: 10.1016/j.lungcan.2018.09.015.
doi: 10.1016/j.lungcan.2018.09.015 |
[8] |
Yamaguchi T, Shimizu J, Hasegawa T, et al. Pre-existing pulmonary fibrosis is a risk factor for anti-PD-1-related pneumonitis in patients with non-small cell lung cancer: a retrospective analysis[J]. Lung Cancer, 2018,125:212-217. DOI: 10.1016/j.lungcan.2018.10.001.
doi: S0169-5002(18)30585-3 pmid: 30429022 |
[9] |
Suzuki Y, Karayama M, Uto T, et al. Assessment of immune-related interstitial lung disease in patients with NSCLC treated with immune checkpoint inhibitors: a multicenter prospective study[J]. J Thorac Oncol, 2020,15(8):1317-1327. DOI: 10.1016/j.jtho.2020.04.002.
doi: S1556-0864(20)30297-5 pmid: 32289515 |
[10] |
Naqash AR, Ricciuti B, Owen DH, et al. Outcomes associated with immune-related adverse events in metastatic non-small cell lung cancer treated with nivolumab: a pooled exploratory analysis from a global cohort[J]. Cancer Immunol Immunother, 2020,69(7):1177-1187. DOI: 10.1007/s00262-020-02536-5.
doi: 10.1007/s00262-020-02536-5 |
[11] |
Sun X, Roudi R, Dai T, et al. Immune-related adverse events associated with programmed cell death protein-1 and programmed cell death ligand 1 inhibitors for non-small cell lung cancer: a PRISMA systematic review and meta-analysis[J]. BMC Cancer, 2019,19(1):558. DOI: 10.1186/s12885-019-5701-6.
doi: 10.1186/s12885-019-5701-6 |
[12] |
Li M, Spakowicz D, Zhao S, et al. Brief report: inhaled corticosteroid use and the risk of checkpoint inhibitor pneumonitis in patients with advanced cancer[J]. Cancer Immunol Immunother, 2020,69(11):2403-2408. DOI: 10.1007/s00262-020-02674-w.
doi: 10.1007/s00262-020-02674-w |
[13] | Inoue H, Okamoto I. Immune checkpoint inhibitors for the treatment of unresectable stage Ⅲ non-small cell lung cancer: emerging me-chanisms and perspectives[J]. Lung Cancer (Auckl), 2019,10:161-170. DOI: 10.2147/lctt.S184380. |
[14] |
Kato T, Masuda N, Nakanishi Y, et al. Nivolumab-induced interstitial lung disease analysis of two phase Ⅱ studies patients with recurrent or advanced non-small-cell lung cancer[J]. Lung Cancer, 2017,104:111-118. DOI: 10.1016/j.lungcan.2016.12.016.
doi: 10.1016/j.lungcan.2016.12.016 |
[15] | Sun Z, Wang S, Du H, et al. Immunotherapy-induced pneumonitis in non-small cell lung cancer patients: current concern in treatment with immune-check-point inhibitors[J]. Invest New Drugs, 2021, In press. DOI: 10.1007/s10637-020-01051-9. |
[16] |
Sul J, Blumenthal GM, Jiang X, et al. FDA approval summary: pembrolizumab for the treatment of patients with metastatic non-small cell lung cancer whose tumors express programmed death-ligand 1[J]. Oncologist, 2016,21(5):643-650. DOI: 10.1634/theoncologist.2015-0498.
doi: 10.1634/theoncologist.2015-0498 |
[17] |
Isono T, Kagiyama N, Takano K, et al. Outcome and risk factor of immune-related adverse events and pneumonitis in patients with advanced or postoperative recurrent non-small cell lung cancer treated with immune checkpoint inhibitors[J]. Thorac Cancer, 2020,12(2):153-164. DOI: 10.1111/1759-7714.13736.
doi: 10.1111/tca.v12.2 |
[18] |
Kanai O, Kim YH, Demura Y, et al. Efficacy and safety of ni-volumab in non-small cell lung cancer with preexisting interstitial lung disease[J]. Thorac Cancer, 2018,9(7):847-855. DOI: 10.1111/1759-7714.12759.
doi: 10.1111/tca.2018.9.issue-7 |
[19] |
Tone M, Izumo T, Awano N, et al. High mortality and poor treatment efficacy of immune checkpoint inhibitors in patients with severe grade checkpoint inhibitor pneumonitis in non-small cell lung cancer[J]. Thorac Cancer, 2019,10(10):2006-2012. DOI: 10.1111/1759-7714.13187.
doi: 10.1111/tca.v10.10 |
[20] |
Moda M, Saito H, Kato T, et al. Tumor invasion in the central airway is a risk factor for early-onset checkpoint inhibitor pneumonitis in patients with non-small cell lung cancer[J]. Thorac Cancer, 2020,11(12):3576-3584. DOI: 10.1111/1759-7714.13703.
doi: 10.1111/tca.v11.12 |
[21] |
Khunger M, Rakshit S, Pasupuleti V, et al. Incidence of pneumonitis with use of programmed death 1 and programmed death-ligand 1 inhibitors in non-small cell lung cancer: a systematic review and meta-analysis of trials[J]. Chest, 2017,152(2):271-281. DOI: 10.1016/j.chest.2017.04.177.
doi: S0012-3692(17)30882-6 pmid: 28499515 |
[22] |
Shaverdian N, Lisberg AE, Bornazyan K, et al. Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: a secondary analysis of the KEYNOTE-001 phase 1 trial[J]. Lancet Oncol, 2017,18(7):895-903. DOI: 10.1016/s1470-2045(17)30380-7.
doi: 10.1016/S1470-2045(17)30380-7 |
[23] |
Voong KR, Hazell SZ, Fu W, et al. Relationship between prior radio-therapy and checkpoint-inhibitor pneumonitis in patients with advanced non-small-cell lung cancer[J]. Clin Lung Cancer, 2019,20(4):e470-e479. DOI: 10.1016/j.cllc.2019.02.018.
doi: 10.1016/j.cllc.2019.02.018 |
[24] | 符伶俐, 李萍, 张芮, 等. 胸部肿瘤患者辐射性肺炎的发生和预测因素[J]. 国际肿瘤学杂志, 2020,47(2):107-111. DOI: 10.3760/cma.j.issn.1673-422X.2020.02.009. |
[25] |
Song P, Zhang D, Cui X, et al. Meta-analysis of immune-related adverse events of immune checkpoint inhibitor therapy in cancer patients[J]. Thorac Cancer, 2020,11(9):2406-2430. DOI: 10.1111/1759-7714.13541.
doi: 10.1111/tca.v11.9 |
[26] |
Pillai RN, Behera M, Owonikoko TK, et al. Comparison of the toxicity profile of PD-1 versus PD-L1 inhibitors in non-small cell lung cancer: a systematic analysis of the literature[J]. Cancer, 2018,124(2):271-277. DOI: 10.1002/cncr.31043.
doi: 10.1002/cncr.31043 pmid: 28960263 |
[27] |
Peng TR, Tsai FP, Wu TW. Indirect comparison between pembroli-zumab and nivolumab for the treatment of non-small cell lung cancer: a meta-analysis of randomized clinical trials[J]. Int Immunopharmacol, 2017,49:85-94. DOI: 10.1016/j.intimp.2017.05.019.
doi: 10.1016/j.intimp.2017.05.019 |
[28] |
Passiglia F, Galvano A, Rizzo S, et al. Looking for the best im-mune-checkpoint inhibitor in pre-treated NSCLC patients: an indirect com-parison between nivolumab, pembrolizumab and atezolizu-mab[J]. Int J Cancer, 2018,142(6):1277-1284. DOI: 10.1002/ijc.31136.
doi: 10.1002/ijc.v142.6 |
[29] |
Garassino MC, Cho BC, Kim JH, et al. Durvalumab as third-line or later treatment for advanced non-small-cell lung cancer (ATLANTIC): an open-label, single-arm, phase 2 study[J]. Lancet Oncol, 2018,19(4):521-536. DOI: 10.1016/s1470-2045(18)30144-x.
doi: 10.1016/S1470-2045(18)30144-X |
[30] |
Gulley JL, Rajan A, Spigel DR, et al. Avelumab for patients with previously treated metastatic or recurrent non-small-cell lung cancer (JAVELIN Solid Tumor): dose-expansion cohort of a multicentre, open-label, phase 1b trial[J]. Lancet Oncol, 2017,18(5):599-610. DOI: 10.1016/s1470-2045(17)30240-1.
doi: 10.1016/S1470-2045(17)30240-1 |
[31] |
Barlesi F, Vansteenkiste J, Spigel D, et al. Avelumab versus docetaxel in patients with platinum-treated advanced non-small-cell lung cancer (JAVELIN Lung 200): an open-label, randomised, phase 3 study[J]. Lancet Oncol, 2018,19(11):1468-1479. DOI: 10.1016/s1470-2045(18)30673-9.
doi: 10.1016/S1470-2045(18)30673-9 |
[32] |
Hellmann MD, Ciuleanu TE, Pluzanski A, et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden[J]. N Engl J Med, 2018,378(22):2093-2104. DOI: 10.1056/NEJMoa1801946.
doi: 10.1056/NEJMoa1801946 |
[33] |
Su Q, Zhu EC, Wu JB, et al. Risk of pneumonitis and pneumonia associated with immune checkpoint inhibitors for solid tumors: a systematic review and meta-analysis[J]. Front Immunol, 2019,10:108. DOI: 10.3389/fimmu.2019.00108.
doi: 10.3389/fimmu.2019.00108 |
[34] |
Antonia SJ, Villegas A, Daniel D, et al. Overall survival with dur-valumab after chemoradiotherapy in stage Ⅲ NSCLC[J]. N Engl J Med, 2018,379(24):2342-2350. DOI: 10.1056/NEJMoa1809697.
doi: 10.1056/NEJMoa1809697 |
[35] | 陈康, 孙步彤. PD-1/PD-L1抑制剂在晚期肿瘤患者中的相关肺炎发生率和发生风险:一项荟萃分析[J]. 中国肺癌杂志, 2020,23(11):927-940. DOI: 10.3779/j.issn.1009-3419.2020.103.14. |
[36] |
Lisberg A, Cummings A, Goldman JW, et al. A phase Ⅱ study of pembrolizumab in EGFR-mutant, PD-L1+, tyrosine kinase inhibitor naïve patients with advanced NSCLC[J]. J Thorac Oncol, 2018,13(8):1138-1145. DOI: 10.1016/j.jtho.2018.03.035.
doi: S1556-0864(18)30602-6 pmid: 29874546 |
[37] |
Oshima Y, Tanimoto T, Yuji K, et al. EGFR-TKI-associated interstitial pneumonitis in nivolumab-treated patients with non-small cell lung cancer[J]. JAMA Oncol, 2018,4(8):1112-1115. DOI: 10.1001/jamaoncol.2017.4526.
doi: 10.1001/jamaoncol.2017.4526 pmid: 29327061 |
[38] |
Oxnard GR, Yang JC, Yu H, et al. TATTON: a multi-arm, phase Ⅰb trial of osimertinib combined with selumetinib, savolitinib, or durvalumab in EGFR-mutant lung cancer[J]. Ann Oncol, 2020,31(4):507-516. DOI: 10.1016/j.annonc.2020.01.013.
doi: 10.1016/j.annonc.2020.01.013 |
[39] | Ahn MJ, Yang J, Yu H, et al. 136O: Osimertinib combined with dur-valumab in EGFR-mutant non-small cell lung cancer: results from the TATTON phase Ⅰb trial[J]. J Thorac Oncol, 2016,11(4):s115 DOI: 10.1016/s1556-0864(16)30246-5. |
[40] | Haanen J, Carbonnel F, Robert C, et al. Management of toxicities from immunotherapy: ESMO clinical practice guidelines for diagnosis, treatment and follow-up[J]. Ann Oncol, 2017, 28(suppl_4): iv119-iv142. DOI: 10.1093/annonc/mdx225. |
[41] | mBrahmer JR, Lacchetti C, Schneider BJ, et al. Management of im-mune-related adverse events in patients treated with immune checkpoint inhibitor therapy: american society of clinical oncology clinical practice guideline[J]. J Oncol Pract, 2018,36(17):1714-1768. DOI: 10.1200/jco.2017.77.6385. |
[42] |
Arbour KC, Mezquita L, Long N, et al. Impact of baseline steroids on efficacy of programmed cell death-1 and programmed death-ligand 1 blockade in patients with non-small-cell lung cancer[J]. J Clin Oncol, 2018,36(28):2872-2878. DOI: 10.1200/jco.2018.79.0006.
doi: 10.1200/JCO.2018.79.0006 |
[43] |
Utsumi H, Araya J, Okuda K, et al. Successful treatment of steroid-refractory immune checkpoint inhibitor-related pneumonitis with triple combination therapy: a case report[J]. Cancer Immunol Immunother, 2020,69(10):2033-2039. DOI: 10.1007/s00262-020-02600-0.
doi: 10.1007/s00262-020-02600-0 |
[44] |
Martins F, Sykiotis GP, Maillard M, et al. New therapeutic perspec-tives to manage refractory immune checkpoint-related toxicities[J]. Lancet Oncol, 2019,20(1):e54-e64. DOI: 10.1016/s1470-2045(18)30828-3.
doi: 10.1016/S1470-2045(18)30828-3 |
[45] |
Frye BC, Meiss F, Von Bubnoff D, et al. Vasoactive intestinal peptide in checkpoint inhibitor-induced pneumonitis[J]. N Engl J Med, 2020,382(26):2573-2574. DOI: 10.1056/NEJMc2000343.
doi: 10.1056/NEJMc2000343 |
[46] | Sehgal S, Velcheti V, Mukhopadhyay S, et al. Focal lung infiltrate complicating PD-1 inhibitor use: a new pattern of drug-associated lung toxicity?[J]. Respir Med Case Rep, 2016,19:118-120. DOI: 10.1016/j.rmcr.2016.09.001. |
[47] |
Suresh K, Naidoo J, Zhong Q, et al. The alveolar immune cell land-scape is dysregulated in checkpoint inhibitor pneumonitis[J]. J Clin Invest, 2019,129(10):4305-4315. DOI: 10.1172/jci128654.
doi: 10.1172/JCI128654 |
[48] |
Bagley SJ, Kothari S, Aggarwal C, et al. Pretreatment neutrophil-to-lymphocyte ratio as a marker of outcomes in nivolumab-treated patients with advanced non-small-cell lung cancer[J]. Lung Cancer, 2017,106:1-7. DOI: 10.1016/j.lungcan.2017.01.013.
doi: 10.1016/j.lungcan.2017.01.013 |
[49] |
Owen DH, Wei L, Bertino EM, et al. Incidence, risk factors, and effect on survival of immune-related adverse events in patients with non-small-cell lung cancer[J]. Clin Lung Cancer, 2018,19(6):e893-e900. DOI: 10.1016/j.cllc.2018.08.008.
doi: 10.1016/j.cllc.2018.08.008 |
[50] | Chu X, Zhao J, Zhou J, et al. Association of baseline peripheral-blood eosinophil count with immune checkpoint inhibitor-related pneumonitis and clinical outcomes in patients with non-small cell lung cancer receiving immune checkpoint inhibitors[J]. Lung Can-cer, 2020,150:76-82. DOI: 10.1016/j.lungcan.2020.08.015. |
[51] | Carretero R, Sektioglu IM, Garbi N, et al. Corrigendum: eosinophils orchestrate cancer rejection by normalizing tumor vessels and enhancing infiltration of CD8(+) T cells[J]. Nat Immunol, 2016,17(2):214. DOI: 10.1038/ni0216-214b. |
[52] |
Fukihara J, Sakamoto K, Koyama J, et al. Prognostic impact and risk factors of immune-related pneumonitis in patients with non-small-cell lung cancer who received programmed death 1 inhibitors[J]. Clin Lung Cancer, 2019, 20(6): 442-450.e4. DOI: 10.1016/j.cllc.2019.07.006.
doi: S1525-7304(19)30210-4 pmid: 31446020 |
[53] | Zeng J, Rengan R, Santana-Davila R, et al. Early assessment of liquid biomarkers to predict pneumonitis after chemoradiation in patients with locally advanced non-small cell lung cancer (LA-NSCLC)[G]. AACR, Philadelphia, USA, 2020. |
[54] |
Yoshida K, Morishima Y, Shiozawa T, et al. Serum soluble inter-leukin-2 receptor as a possible biomarker for the early detection and follow-up of nivolumab-induced pneumonitis[J]. J Thorac Oncol, 2019,14(5):e90-e91. DOI: 10.1016/j.jtho.2018.12.028.
doi: 10.1016/j.jtho.2018.12.028 |
[55] |
Wang YN, Lou DF, Li DY, et al. Elevated levels of IL-17A and IL-35 in plasma and bronchoalveolar lavage fluid are associated with checkpoint inhibitor pneumonitis in patients with non-small cell lung cancer[J]. Oncol Lett, 2020,20(1):611-622. DOI: 10.3892/ol.2020.11618.
doi: 10.3892/ol.2020.11618 pmid: 32565986 |
[1] | 刘静, 刘芹, 黄梅. 基于SMOTE算法的食管癌放化疗患者肺部感染的预后模型构建[J]. 国际肿瘤学杂志, 2024, 51(5): 267-273. |
[2] | 萨蔷, 徐航程, 王佳玉. 乳腺癌免疫治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 227-234. |
[3] | 钟楠, 王淡瑜, 周欢欢, 刘宁, 戴纬, 刘黎琼, 郭智. CD30单抗联合PD-1抑制剂治疗复发难治性霍奇金淋巴瘤的疗效与安全性[J]. 国际肿瘤学杂志, 2024, 51(4): 245-248. |
[4] | 钱晓涛, 石子宜, 胡格. Ⅲ~ⅣA期食管鳞状细胞癌根治性放化疗后行免疫检查点抑制剂维持治疗的真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(3): 151-156. |
[5] | 解淑萍, 孙亚红, 汪超. 早期肿瘤标志物联合NLR、PLR预测胃癌免疫治疗疗效[J]. 国际肿瘤学杂志, 2024, 51(3): 157-165. |
[6] | 赵鑫, 范学武, 田龙, 胡逸民. 三维超声在前列腺癌图像引导放疗中的应用与评价研究[J]. 国际肿瘤学杂志, 2024, 51(1): 43-49. |
[7] | 陈欣祎, 翁一鸣, 魏家燕, 王劲松, 彭敏. 免疫检查点抑制剂在复发或转移性头颈部鳞状细胞癌治疗中的进展[J]. 国际肿瘤学杂志, 2023, 50(9): 553-557. |
[8] | 邓隽军, 赵大勇, 李淼. 免疫检查点抑制剂在非小细胞肺癌治疗中的不良反应及危险因素[J]. 国际肿瘤学杂志, 2023, 50(9): 564-568. |
[9] | 张露, 蒋华, 林州, 马辰莺, 徐晓婷, 王利利, 周菊英. 免疫检查点抑制剂治疗复发转移性宫颈癌的疗效及预后分析[J]. 国际肿瘤学杂志, 2023, 50(8): 475-483. |
[10] | 过慈良, 江春平, 吴俊华. 肠道菌群与肿瘤免疫治疗[J]. 国际肿瘤学杂志, 2023, 50(7): 432-436. |
[11] | 顾安琴, 龙金华, 金风. 鼻咽癌免疫治疗的临床研究进展[J]. 国际肿瘤学杂志, 2023, 50(5): 299-303. |
[12] | 杨丽蓉, 王羽丰. 预测浆液性卵巢癌术后复发远处转移风险机器学习模型的构建[J]. 国际肿瘤学杂志, 2023, 50(4): 220-226. |
[13] | 王雅倩, 杜逸玮, 王兴, 贾军梅. 小细胞肺癌免疫治疗预后预测指标研究进展[J]. 国际肿瘤学杂志, 2023, 50(3): 179-182. |
[14] | 曹晓辉, 于荭, 李万湖. 基于CT的影像组学分析在预测和鉴别治疗相关性肺炎中的应用[J]. 国际肿瘤学杂志, 2023, 50(2): 107-111. |
[15] | 焦盼盼, 薛丽娟, 詹娟. 免疫检查点抑制剂相关不良反应的危险因素与预测因素[J]. 国际肿瘤学杂志, 2023, 50(12): 739-744. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||