
Journal of International Oncology ›› 2025, Vol. 52 ›› Issue (9): 598-602.doi: 10.3760/cma.j.cn371439-20250417-00101
• Review • Previous Articles Next Articles
Hai Yanan, Bao Wenfang, Shentu Hangxiao, Chen Jingde(
)
Received:2025-04-17
Revised:2025-05-14
Online:2025-09-08
Published:2025-10-21
Contact:
Chen Jingde
E-mail:1600092@tongji.edu.cn
Supported by:Hai Yanan, Bao Wenfang, Shentu Hangxiao, Chen Jingde. Mechanism of immunotherapy resistance and the progress of post-resistance treatment for dMMR/MSI-H metastatic colorectal cancer[J]. Journal of International Oncology, 2025, 52(9): 598-602.
| [1] | Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834. |
| [2] |
Taieb J, Svrcek M, Cohen R, et al. Deficient mismatch repair/microsatellite unstable colorectal cancer: diagnosis, prognosis and treatment[J]. Eur J Cancer, 2022, 175: 136-157. DOI: 10.1016/j.ejca.2022.07.020.
pmid: 36115290 |
| [3] | Mulet-Margalef N, Linares J, Badia-Ramentol J, et al. Challenges and therapeutic opportunities in the dMMR/MSI-H colorectal cancer landscape[J]. Cancers (Basel), 2023, 15(4): 1022. DOI: 10.3390/cancers15041022. |
| [4] |
Wang Q, Shen X, Chen G, et al. How to overcome resistance to immune checkpoint inhibitors in colorectal cancer: from mechanisms to translation[J]. Int J Cancer, 2023, 153(4): 709-722. DOI: 10.1002/ijc.34464.
pmid: 36752642 |
| [5] |
Ratovomanana T, Nicolle R, Cohen R, et al. Prediction of response to immune checkpoint blockade in patients with metastatic colorectal cancer with microsatellite instability[J]. Ann Oncol, 2023, 34(8): 703-713. DOI: 10.1016/j.annonc.2023.05.010.
pmid: 37269904 |
| [6] | Fucà G, Cohen R, Lonardi S, et al. Ascites and resistance to immune checkpoint inhibition in dMMR/MSI-H metastatic colorectal and gastric cancers[J]. J Immunother Cancer, 2022, 10(2): e004001. DOI: 10.1136/jitc-2021-004001. |
| [7] | Küçükköse E, Heesters BA, Villaudy J, et al. Modeling resistance of colorectal peritoneal metastases to immune checkpoint blockade in humanized mice[J]. J Immunother Cancer, 2022, 10(12): e005345. DOI: 10.1136/jitc-2022-005345. |
| [8] |
Hosokawa A, Tamura H, Ichihara A, et al. Pathological complete response to liver metastasis with pembrolizumab in a previously treated patient with microsatellite instability-high colorectal cancer[J]. Anticancer Res, 2024, 44(9): 4119-4125. DOI: 10.21873/anticanres.17241.
pmid: 39197935 |
| [9] |
Lin A, Zhang J, Luo P. Crosstalk between the MSI status and tumor microenvironment in colorectal cancer[J]. Front Immunol, 2020, 11: 2039. DOI: 10.3389/fimmu.2020.02039.
pmid: 32903444 |
| [10] | Burke KP, Chaudhri A, Freeman GJ, et al. The B7: CD28 family and friends: unraveling coinhibitory interactions[J]. Immunity, 2024, 57(2): 223-244. DOI: 10.1016/j.immuni.2024.01.013. |
| [11] | Shi D, Wu X, Jian Y, et al. USP14 promotes tryptophan metabolism and immune suppression by stabilizing IDO1 in colorectal cancer[J]. Nat Commun, 2022, 13(1): 5644. DOI: 10.1038/s41467-022-33285-x. |
| [12] | Zhong ZA, Michalski MN, Stevens PD, et al. Regulation of Wnt receptor activity: implications for therapeutic development in colon cancer[J]. J Biol Chem, 2021, 296: 100782. DOI: 10.1016/j.jbc.2021.100782. |
| [13] |
Wang Y, Liu S, Yang Z, et al. Anti-PD-1/L1 lead-in before MAPK inhibitor combination maximizes antitumor immunity and efficacy[J]. Cancer Cell, 2021, 39(10): 1375-1387.e6. DOI: 10.1016/j.ccell.2021.07.023.
pmid: 34416167 |
| [14] | Liu J, Huang X, Liu H, et al. Immune landscape and prognostic immune-related genes in KRAS-mutant colorectal cancer patients[J]. J Transl Med, 2021, 19(1): 27. DOI: 10.1186/s12967-020-02638-9. |
| [15] | Deng Z, Fan T, Xiao C, et al. TGF-β signaling in health, disease and therapeutics[J]. Signal Transduct Target Ther, 2024, 9(1): 61. DOI: 10.1038/s41392-024-01764-w. |
| [16] | Derynck R, Turley SJ, Akhurst RJ. TGF-β biology in cancer progression and immunotherapy[J]. Nat Rev Clin Oncol, 2021, 18(1): 9-34. DOI: 10.1038/s41571-020-0403-1. |
| [17] |
Di Nicolantonio F, Vitiello PP, Marsoni S, et al. Precision oncology in metastatic colorectal cancer-from biology to medicine[J]. Nat Rev Clin Oncol, 2021, 18(8): 506-525. DOI: 10.1038/s41571-021-00495-z.
pmid: 33864051 |
| [18] | Kirby D, Parmar B, Fathi S, et al. Determinants of ligand specificity and functional plasticity in type Ⅰ interferon signaling[J]. Front Immunol, 2021, 12: 748423. DOI: 10.3389/fimmu.2021.748423. |
| [19] | Yamaguchi H, Hsu JM, Sun L, et al. Advances and prospects of biomarkers for immune checkpoint inhibitors[J]. Cell Rep Med, 2024, 5(7): 101621. DOI: 10.1016/j.xcrm.2024.101621. |
| [20] |
Vasaikar S, Huang C, Wang X, et al. Proteogenomic analysis of human colon cancer reveals new therapeutic opportunities[J]. Cell, 2019, 177(4): 1035-1049.e19. DOI: 10.1016/j.cell.2019.03.030.
pmid: 31031003 |
| [21] |
Mager LF, Burkhard R, Pett N, et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy[J]. Science, 2020, 369(6510): 1481-1489. DOI: 10.1126/science.abc3421.
pmid: 32792462 |
| [22] | 贺小康, 涂贤, 姚菲, 等. 具核梭杆菌与结直肠癌发生发展的研究进展[J]. 国际肿瘤学杂志, 2022, 49(2): 121-124. DOI: 10.3760/cma.j.cn371439-20210202-00020. |
| [23] | Kim HS, Kim CG, Kim WK, et al. Fusobacterium nucleatum induces a tumor microenvironment with diminished adaptive immunity against colorectal cancers[J]. Front Cell Infect Microbiol, 2023, 13: 1101291. DOI: 10.3389/fcimb.2023.1101291. |
| [24] | Chen Z, Huang L. Fusobacterium nucleatum carcinogenesis and drug delivery interventions[J]. Adv Drug Deliv Rev, 2024, 209: 115319. DOI: 10.1016/j.addr.2024.115319. |
| [25] | Kluger H, Barrett JC, Gainor JF, et al. Society for immunotherapy of cancer (SITC) consensus definitions for resistance to combinations of immune checkpoint inhibitors[J]. J Immunother Cancer, 2023, 11(3): e005921. DOI: 10.1136/jitc-2022-005921. |
| [26] | Liu F, Zhong F, Wu H, et al. Prevalence and associations of beta2-microglobulin mutations in MSI-H/dMMR cancers[J]. Oncologist, 2023, 28(3): e136-e144. DOI: 10.1093/oncolo/oyac268. |
| [27] |
Ghoneim HE, Fan Y, Moustaki A, et al. De novo epigenetic programs inhibit PD-1 blockade-mediated T cell rejuvenation[J]. Cell, 2017, 170(1): 142-157.e19. DOI: 10.1016/j.cell.2017.06.007.
pmid: 28648661 |
| [28] | André T, Elez E, Lenz HJ, et al. Nivolumab plus ipilimumab versus nivolumab in microsatellite instability-high metastatic colorectal cancer (CheckMate 8HW): a randomised, open-label, phase 3 trial[J]. Lancet, 2025, 405(10476): 383-395. DOI: 10.1016/S0140-6736(24)02848-4. |
| [29] |
Paik J. Nivolumab plus relatlimab: first approval[J]. Drugs, 2022, 82(8): 925-931. DOI: 10.1007/s40265-022-01723-1.
pmid: 35543970 |
| [30] | Overman MJ, Gelsomino F, Aglietta M, et al. Nivolumab plus relatlimab in patients with previously treated microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: the phase Ⅱ CheckMate 142 study[J]. J Immunother Cancer, 2024, 12(5): e008689. DOI: 10.1136/jitc-2023-008689. |
| [31] | Yu JH, Xiao BY, Li DD, et al. Neoadjuvant camrelizumab plus apatinib for locally advanced microsatellite instability-high or mismatch repair-deficient colorectal cancer (NEOCAP): a single-arm, open-label, phase 2 study[J]. Lancet Oncol, 2024, 25(7): 843-852. DOI: 10.1016/S1470-2045(24)00203-1. |
| [32] |
Fukuoka S, Hara H, Takahashi N, et al. Regorafenib plus nivolumab in patients with advanced gastric or colorectal cancer: an open-label, dose-escalation, and dose-expansion phase Ⅰb trial (REGONIVO, EPOC1603)[J]. J Clin Oncol, 2020, 38(18): 2053-2061. DOI: 10.1200/JCO.19.03296.
pmid: 32343640 |
| [33] | 詹海峰, 王文学, 耿嘉蔚. 晚期结直肠癌精准分子靶向治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(9): 601-605. DOI: 10.3760/cma.j.cn371439-20240522-00100. |
| [34] | Ambrosini M, Tougeron D, Modest D, et al. BRAF+EGFR+/-MEK inhibitors after immune checkpoint inhibitors in BRAFV600E mutated and deficient mismatch repair or microsatellite instability high metastatic colorectal cancer[J]. Eur J Cancer, 2024, 210: 114290. DOI: 10.1016/j.ejca.2024.114290. |
| [35] | Jiao J, Wu Y, Wu S, et al. Enhancing colorectal cancer treatment through VEGF/VEGFR inhibitors and immunotherapy[J]. Curr Treat Options Oncol, 2025, 26(3): 213-225. DOI: 10.1007/s11864-025-01306-8. |
| [36] |
Antoniotti C, Rossini D, Pietrantonio F, et al. Upfront fluorouracil, leucovorin, oxaliplatin, and irinotecan plus bevacizumab with or without atezolizumab for patients with metastatic colorectal cancer: updated and overall survival results of the ATEZOTRIBE study[J]. J Clin Oncol, 2024, 42(22): 2637-2644. DOI: 10.1200/JCO.23.02728.
pmid: 38865678 |
| [37] | Wang ZX, Peng J, Liang X, et al. First-line serplulimab in metastatic colorectal cancer: phase 2 results of a randomized, double-blind, phase 2/3 trial[J]. Med, 2024, 5(9): 1150-1163.e3. DOI: 10.1016/j.medj.2024.05.009. |
| [38] | Jin Y, Jiang J, Mao W, et al. Treatment strategies and molecular mechanism of radiotherapy combined with immunotherapy in colorectal cancer[J]. Cancer Lett, 2024, 591: 216858. DOI: 10.1016/j.canlet.2024.216858. |
| [39] | Parikh AR, Szabolcs A, Allen JN, et al. Radiation therapy enhances immunotherapy response in microsatellite stable colorectal and pancreatic adenocarcinoma in a phase Ⅱ trial[J]. Nat Cancer, 2021, 2(11): 1124-1135. DOI: 10.1038/s43018-021-00269-7. |
| [40] | Lin Z, Cai M, Zhang P, et al. Phase Ⅱ, single-arm trial of preo-perative short-course radiotherapy followed by chemotherapy and camrelizumab in locally advanced rectal cancer[J]. J Immunother Cancer, 2021, 9(11): e003554. DOI: 10.1136/jitc-2021-003554. |
| [41] | Barnestein R, Galland L, Kalfeist L, et al. Immunosuppressive tumor microenvironment modulation by chemotherapies and targeted therapies to enhance immunotherapy effectiveness[J]. Oncoimmuno-logy, 2022, 11(1): 2120676. DOI: 10.1080/2162402X.2022.2120676. |
| [42] |
Thibaudin M, Fumet JD, Chibaudel B, et al. First-line durvalumab and tremelimumab with chemotherapy in RAS-mutated metastatic colorectal cancer: a phase 1b/2 trial[J]. Nat Med, 2023, 29(8): 2087-2098. DOI: 10.1038/s41591-023-02497-z.
pmid: 37563240 |
| [43] |
Leoni G, D'Alise AM, Cotugno G, et al. A genetic vaccine encoding shared cancer neoantigens to treat tumors with microsatellite instability[J]. Cancer Res, 2020, 80(18): 3972-3982. DOI: 10.1158/0008-5472.CAN-20-1072.
pmid: 32690723 |
| [44] | McHale D, Francisco-Anderson L, Sandy P, et al. P-325 oral delivery of a single microbial strain, EDP1503, induces anti-tumor responses via gut-mediated activation of both innate and adaptive immunity[J]. Ann Oncol, 2020, 31, Supplement 3: S195. DOI: 10.1016/j.annonc.2020.04.407. |
| [45] | Valsecchi AA, Ferrari G, Paratore C, et al. Gut and local microbiota in patients with cancer: increasing evidence and potential clinical applications[J]. Crit Rev Oncol Hematol, 2024, 197: 104328. DOI: 10.1016/j.critrevonc.2024.104328. |
| [46] | Liu Z, Ren Y, Weng S, et al. A new trend in cancer treatment: the combination of epigenetics and immunotherapy[J]. Front Immunol, 2022, 13: 809761. DOI: 10.3389/fimmu.2022.809761. |
| [47] | Huang KC, Chiang SF, Chen WT, et al. Decitabine augments chemotherapy-induced PD-L1 upregulation for PD-L1 blockade in colorectal cancer[J]. Cancers (Basel), 2020, 12(2): 462. DOI: 10.3390/cancers12020462. |
| [48] | Kim YD, Park SM, Ha HC, et al. HDAC inhibitor, CG-745, enhances the anti-cancer effect of anti-PD-1 immune checkpoint inhibitor by modulation of the immune microenvironment[J]. J Cancer, 2020, 11(14): 4059-4072. DOI: 10.7150/jca.44622. |
| [49] |
Wang F, Jin Y, Wang M, et al. Combined anti-PD-1, HDAC inhibitor and anti-VEGF for MSS/pMMR colorectal cancer: a randomized phase 2 trial[J]. Nat Med, 2024, 30(4): 1035-1043. DOI: 10.1038/s41591-024-02813-1.
pmid: 38438735 |
| [50] |
Albrecht HC, Gustavus D, Schwanemann J, et al. Generation of colon cancer-derived tumor-infiltrating T cells (TILs) for adoptive cell therapy[J]. Cytotherapy, 2023, 25(5): 537-547. DOI: 10.1016/j.jcyt.2023.01.009.
pmid: 36775787 |
| [51] |
Wang Z, Cao YJ. Adoptive cell therapy targeting neoantigens: a frontier for cancer research[J]. Front Immunol, 2020, 11: 176. DOI: 10.3389/fimmu.2020.00176.
pmid: 32194541 |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||