Journal of International Oncology ›› 2025, Vol. 52 ›› Issue (4): 202-208.doi: 10.3760/cma.j.cn371439-20240618-00034
• Original Article • Previous Articles Next Articles
Liu Haiyan1,2, Zhang Chao1,3()
Received:
2024-06-18
Revised:
2024-12-31
Online:
2025-04-08
Published:
2025-04-21
Supported by:
Liu Haiyan, Zhang Chao. A predictive model for immunotherapy efficacy in non-small cell lung cancer constructed based on CT image-weighted radiomics score[J]. Journal of International Oncology, 2025, 52(4): 202-208.
"
临床资料 | 治疗有效组 (n=66) | 治疗无效组 (n=119) | t/χ2值 | P值 |
---|---|---|---|---|
年龄(岁) | 63.45±9.14 | 64.48±8.78 | 0.75 | 0.452 |
性别 | ||||
男性 | 57 | 88 | 3.86 | 0.049 |
女性 | 9 | 31 | ||
病理类型 | ||||
鳞状细胞癌 | 40 | 46 | ||
腺癌 | 24 | 65 | 8.41 | 0.015 |
其他 | 2 | 8 | ||
吸烟史 | ||||
有 | 31 | 35 | 5.70 | 0.017 |
无 | 35 | 84 | ||
治疗前脑转移 | ||||
有 | 5 | 11 | 0.15 | 0.699 |
无 | 61 | 108 | ||
治疗前肺内转移 | ||||
有 | 19 | 56 | 5.88 | 0.015 |
无 | 47 | 63 | ||
T分期 | ||||
T1 | 6 | 12 | 0.83 | 0.843 |
T2 | 11 | 25 | ||
T3 | 31 | 55 | ||
T4 | 18 | 27 | ||
N分期 | ||||
N0 | 10 | 17 | 3.12 | 0.374 |
N1 | 16 | 17 | ||
N2 | 10 | 21 | ||
N3 | 30 | 64 | ||
M分期 | ||||
M0 | 23 | 30 | 1.93 | 0.165 |
M1 | 43 | 89 | ||
ROS1基因突变 | ||||
有 | 1 | 7 | 1.96 | 0.162 |
无 | 65 | 112 | ||
KRAS基因突变 | ||||
有 | 5 | 18 | 2.22 | 0.136 |
无 | 61 | 101 | ||
EGFR基因突变 | ||||
有 | 10 | 22 | 0.33 | 0.566 |
无 | 56 | 97 | ||
PD-L1表达 | ||||
高表达 | 16 | 23 | ||
低表达 | 25 | 42 | 1.12 | 0.570 |
阴性 | 25 | 54 |
"
变量 | β值 | SE值 | Wald χ2值 | OR值 | 95%CI | P值 |
---|---|---|---|---|---|---|
CT影像加权组学评分(≥0.62分/<0.62分) | 3.844 | 4.209 | 32.09 | 14.77 | 3.25~22.35 | <0.001 |
病理类型(以其他类型为对照) | ||||||
鳞状细胞癌 | 1.319 | 0.625 | 4.45 | 1.74 | 1.35~3.52 | 0.035 |
腺癌 | 0.728 | 0.617 | 1.39 | 0.48 | 0.14~1.62 | 0.078 |
性别(男/女) | 1.019 | 0.838 | 1.48 | 2.77 | 0.54~14.31 | 0.224 |
吸烟史(有/无) | -1.389 | 0.683 | 4.14 | 4.01 | 1.05~15.30 | 0.042 |
治疗前肺内转移(有/无) | 1.095 | 0.665 | 2.71 | 1.20 | 1.01~1.38 | 0.010 |
常量 | 14.071 | 2.551 | 30.42 | <0.001 |
[1] | 张碧霞, 丁江华. EGFR突变型非小细胞肺癌EGFR-TKI获得性耐药后免疫治疗现状[J]. 国际肿瘤学杂志, 2023, 50(2): 97-101. DOI: 10.3760/cma.j.cn371439-20220719-00020. |
[2] | Chen P, Liu Y, Wen Y, et al. Non-small cell lung cancer in China[J]. Cancer Commun (Lond), 2022, 42(10): 937-970. DOI: 10.1002/cac2.12359. |
[3] |
Memmott RM, Wolfe AR, Carbone DP, et al. Predictors of response, progression-free survival, and overall survival in patients with lung cancer treated with immune checkpoint inhibitors[J]. J Thorac Oncol, 2021, 16(7): 1086-1098. DOI: 10.1016/j.jtho.2021.03.017.
pmid: 33845212 |
[4] | Sakurai E, Ishizawa H, Kiriyama Y, et al. γH2AX, a DNA double-strand break marker, correlates with PD-L1 expression in smoking-related lung adenocarcinoma[J]. Int J Mol Sci, 2022, 23(12): 6679. DOI: 10.3390/ijms23126679. |
[5] | Cheng X, Wang L, Zhang Z. Prognostic significance of PD-L1 expression and CD8+ TILs density for disease-free survival in surgically resected lung squamous cell carcinoma: a retrospective study[J]. J Thorac Dis, 2022, 14(6): 2224-2234. DOI: 10.21037/jtd-22-630. |
[6] | Jeong H, Park HB, Hong J, et al. Identifying coronary artery calcification using chest x-ray radiographs and machine learning: the role of the radiomics score[J]. J Thorac Imaging, 2024, 39(2): 119-126. DOI: 10.1097/RTI.0000000000000757. |
[7] | Guo Y, Xie X, Tang W, et al. Noninvasive identification of HER2-low-positive status by MRI-based deep learning radiomics predicts the disease-free survival of patients with breast cancer[J]. Eur Radiol, 2024, 34(2): 899-913. DOI: 10.1007/s00330-023-09990-6. |
[8] | Liu Y, Fu Q, Peng X, et al. Attention-based deep multiple-instance learning for classifying circular RNA and other long non-coding RNA[J]. Genes (Basel), 2021, 12(12): 2018. DOI: 10.3390/genes12122018. |
[9] |
Moranguinho J, Pereira T, Ramos B, et al. Attention based deep multiple instance learning approach for lung cancer prediction using histopathological images[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2021, 2021: 2852-2855. DOI: 10.1109/EMBC46164.2021.9631000.
pmid: 34891842 |
[10] | 中华医学会, 中华医学会肿瘤学分会, 中华医学会杂志社. 中华医学会肺癌临床诊疗指南(2019版)[J]. 中华肿瘤杂志, 2020, 42(4): 257-287. DOI: 10.3760/cma.j.cn112152-20200120-00049. |
[11] |
Winter KS, Hofmann FO, Thierfelder KM, et al. Towards volumetric thresholds in RECIST 1.1: therapeutic response assessment in hepatic metastases[J]. Eur Radiol, 2018, 28(11): 4839-4848. DOI: 10.1007/s00330-018-5424-0.
pmid: 29736851 |
[12] | Zhu Z, Chen M, Hu G, et al. A pre-treatment CT-based weighted radiomic approach combined with clinical characteristics to predict durable clinical benefits of immunotherapy in advanced lung cancer[J]. Eur Radiol, 2023, 33(6): 3918-3930. DOI: 10.1007/s00330-022-09337-7. |
[13] | Long Y, Xiong Q, Song Q, et al. Immunotherapy plus chemotherapy showed superior clinical benefit to chemotherapy alone in advanced NSCLC patients after progression on osimertinib[J]. Thorac Cancer, 2022, 13(3): 394-403. DOI: 10.1111/1759-7714.14271. |
[14] | 杜希剑, 章凯敏, 陈斌, 等. CT影像组学对非小细胞肺癌免疫治疗疗效的预测价值[J]. 实用放射学杂志, 2023, 39(4): 548-551, 599. DOI: 10.3969/j.issn.1002-1671.2023.04.008. |
[15] |
Bracci S, Dolciami M, Trobiani C, et al. Quantitative CT texture analysis in predicting PD-L1 expression in locally advanced or metastatic NSCLC patients[J]. Radiol Med, 2021, 126(11): 1425-1433. DOI: 10.1007/s11547-021-01399-9.
pmid: 34373989 |
[16] |
Sun R, Limkin EJ, Vakalopoulou M, et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study[J]. Lancet Oncol, 2018, 19(9): 1180-1191. DOI: 10.1016/S1470-2045(18)30413-3.
pmid: 30120041 |
[17] | Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer[J]. N Engl J Med, 2012, 366(26): 2443-2454. DOI: 10.1056/NEJMoa1200690. |
[18] | 余镔. 吸烟史影响免疫检查点抑制剂在晚期非小细胞肺癌中疗效的Meta分析[D]. 南昌: 南昌大学, 2021. DOI: 10.27232/d.cnki.gnchu.2021.000258. |
[19] |
Kinoshita T, Kudo-Saito C, Muramatsu R, et al. Determination of poor prognostic immune features of tumour microenvironment in non-smoking patients with lung adenocarcinoma[J]. Eur J Cancer, 2017, 86: 15-27. DOI: 10.1016/j.ejca.2017.08.026.
pmid: 28950145 |
[20] | Dall'Olio FG, Marabelle A, Caramella C. Tumour burden and efficacy of immune-checkpoint inhibitors[J]. Nat Rev Clin Oncol, 2022, 19(2): 75-90. DOI: 10.1038/s41571-021-00564-3. |
[21] | Shen L, Fu H, Tao G, et al. Pre-immunotherapy contrast-enhanced CT texture-based classification: a useful approach to non-small cell lung cancer immunotherapy efficacy prediction[J]. Front Oncol, 2021, 11: 591106. DOI: 10.3389/fonc.2021.591106. |
[22] |
Ligero M, Garcia-Ruiz A, Viaplana C, et al. A CT-based radiomics signature is associated with response to immune checkpoint inhibitors in advanced solid tumors[J]. Radiology, 2021, 299(1): 109-119. DOI: 10.1148/radiol.2021200928.
pmid: 33497314 |
[1] | Liu Yiyong, Huo Fengzhi. Differential diagnosis model construction of invasive degree of lung adenocarcinoma manifesting as ground-glass nodules with no or little solid component based on energy spectrum CT features [J]. Journal of International Oncology, 2025, 52(4): 197-201. |
[2] | Liu Qianyi, Dong Hongmin, Wang Wenling, Wang Gang, Chen Wanghua. Clinical efficacy and safety of radiotherapy combined with chemotherapy and immunotherapy for HER2-negative locally advanced or advanced gastric cancer [J]. Journal of International Oncology, 2025, 52(4): 209-216. |
[3] | Wen Yingmei, Xia Jinxiong, Wang Yuanyuan, Yao Yi. Impacts of radiotherapy on anti-tumor immunity:a comprehensive review from the fundamental to the clinical [J]. Journal of International Oncology, 2025, 52(4): 231-236. |
[4] | Tang Lei, Cai Zongyou, Chang Jianhua. Research updates of RET proto-oncogene in non-small cell lung cancer [J]. Journal of International Oncology, 2025, 52(4): 237-241. |
[5] | Yang Shengjun, Ren Jiang, Yang Dan, Long Yu, Shang Qunxian. Expression levels and clinical significance of miR-4262,NRG1 in non-small cell lung cancer tissues [J]. Journal of International Oncology, 2025, 52(3): 129-135. |
[6] | Han Shuang. CT feature analysis and predictive value of visceral pleural invasion in stage Ⅰ lung adenocarcinoma with peripheral solid nodules [J]. Journal of International Oncology, 2025, 52(3): 136-143. |
[7] | Lai Ruihe, Teng Yue, Rong Jian, Sheng Dandan, Geng Yuzhi, Chen Jianxin, Jiang Chong, Ding Chongyang, Zhou Zhengyang. Predictive value of a combined model for lymph node metastasis in NSCLC based on primary lesion radiomics from 18F-FDG PET/CT [J]. Journal of International Oncology, 2025, 52(3): 144-151. |
[8] | Ouyang Surui, Sun Mengying, Tang Zhuang, Li Jin, He Jingdong. Research progress of intratumoral immune injection of drugs and drug delivery carriers [J]. Journal of International Oncology, 2025, 52(3): 169-175. |
[9] | Wang Zhiying, Sheng Lijun. Research progress of peripheral blood biomarkers in immunotherapy of non-small cell lung cancer [J]. Journal of International Oncology, 2025, 52(3): 180-185. |
[10] | Wang Xibo, Tian Baowen, Chen Shiqiao. Mechanism of Breg cell in tumor immune escape and related therapeutic targets [J]. Journal of International Oncology, 2025, 52(2): 107-112. |
[11] | Ye Yongying, Zou Yan, Chen Tianming, Wu Weili. Research progress of clock gene Period family in head and neck squamous cell carcinoma [J]. Journal of International Oncology, 2025, 52(2): 113-118. |
[12] | Chen Ruyan, Fu Zhenming. Current status and advances in immunotherapy for advanced renal cell carcinoma [J]. Journal of International Oncology, 2025, 52(2): 124-128. |
[13] | Ma Peihan, Zhang Lingmin, Li Qian, Lu Ning, Wen Hua, Zhang Mingxin. Effects of ALKBH5 on the malignant biological behavior of esophageal squamous cell carcinoma and the related mechanism [J]. Journal of International Oncology, 2025, 52(2): 79-88. |
[14] | Wu Xiaowei, Hu Ge, Chen Li, Qian Xiaotao, Cui Xiangli, Zhu Fengqin. Predictive value of pre-radiotherapy maximum tumor diameter and peripheral blood NLR for esophageal fistula in esophageal squamous carcinoma patients [J]. Journal of International Oncology, 2025, 52(1): 38-42. |
[15] | Yu Yang, Tang Shimin, Yang Lu, Li Na. Research progress in treatment strategies and prognostic factors for stage pT2-3N0M0 thoracic esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2025, 52(1): 43-47. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||