Journal of International Oncology ›› 2024, Vol. 51 ›› Issue (12): 779-784.doi: 10.3760/cma.j.cn371439-20240727-00132
• Reviews • Previous Articles Next Articles
Zhou Mingrui1, Qi Mengqi2, Zhang Yanyan1, Shi Yinuan1, Yue Chuan1, Zhang Yan1, Liu Xianqiang1, Zhang Yan1()
Received:
2024-07-27
Revised:
2024-09-01
Online:
2024-12-08
Published:
2025-01-07
Contact:
Zhang Yan
E-mail:285951758@qq.com
Zhou Mingrui, Qi Mengqi, Zhang Yanyan, Shi Yinuan, Yue Chuan, Zhang Yan, Liu Xianqiang, Zhang Yan. Research progress in the relationship between microbial communities and breast cancer in human tissues[J]. Journal of International Oncology, 2024, 51(12): 779-784.
[1] | Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834. |
[2] | Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024[J]. CA Cancer J Clin, 2024, 74(1): 12-49. DOI: 10.3322/caac.21820. |
[3] | Sukumar J, Kassem M, Agnese D, et al. Concurrent germline BRCA1, BRCA2, and CHEK2 pathogenic variants in hereditary breast cancer: a case series[J]. Breast Cancer Res Treat, 2021, 186(2): 569-575. DOI: 10.1007/s10549-021-06095-w. |
[4] | Schluter J, Peled JU, Taylor BP, et al. The gut microbiota is associated with immune cell dynamics in humans[J]. Nature, 2020, 588(7837): 303-307. DOI: 10.1038/s41586-020-2971-8. |
[5] |
Wu Y, Zhang Y, Zhang W, et al. The tremendous clinical potential of the microbiota in the treatment of breast cancer: the next frontier[J]. J Cancer Res Clin Oncol, 2023, 149(13): 12513-12534. DOI: 10.1007/s00432-023-05014-4.
pmid: 37382675 |
[6] | Bernardo G, Le Noci V, Di Modica M, et al. The emerging role of the microbiota in breast cancer progression[J]. Cells, 2023, 12(15): 1945. DOI: 10.3390/cells12151945. |
[7] | Perler BK, Friedman ES, Wu GD. The role of the gut microbiota in the relationship between diet and human health[J]. Annu Rev Physiol, 2023, 85: 449-468. DOI: 10.1146/annurev-physiol-031522-092054. |
[8] | Ahn J, Hayes RB. Environmental influences on the human microbiome and implications for noncommunicable disease[J]. Annu Rev Public Health, 2021, 42: 277-292. DOI: 10.1146/annurev-publhealth-012420-105020. |
[9] | Wu AH, Tseng C, Vigen C, et al. Gut microbiome associations with breast cancer risk factors and tumor characteristics: a pilot study[J]. Breast Cancer Res Treat, 2020, 182(2): 451-463. DOI: 10.1007/s10549-020-05702-6. |
[10] |
Nejman D, Livyatan I, Fuks G, et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria[J]. Science, 2020, 368(6494): 973-980. DOI: 10.1126/science.aay9189.
pmid: 32467386 |
[11] |
Wang N, Sun T, Xu J. Tumor-related microbiome in the breast microenvironment and breast cancer[J]. J Cancer, 2021, 12(16): 4841-4848. DOI: 10.7150/jca.58986.
pmid: 34234854 |
[12] | Gomaa EZ. Human gut microbiota/microbiome in health and diseases: a review[J]. Antonie Van Leeuwenhoek, 2020, 113(12): 2019-2040. DOI: 10.1007/s10482-020-01474-7. |
[13] | Song X, Wei C, Li X. The relationship between microbial community and breast cancer[J]. Front Cell Infect Microbiol, 2022, 12: 849022. DOI: 10.3389/fcimb.2022.849022. |
[14] | Zhang Z, Tang H, Chen P, et al. Demystifying the manipulation of host immunity, metabolism, and extraintestinal tumors by the gut microbiome[J]. Signal Transduct Target Ther, 2019, 4: 41. DOI: 10.1038/s41392-019-0074-5. |
[15] | Komorowski AS, Pezo RC. Untapped "-omics": the microbial metagenome, estrobolome, and their influence on the development of breast cancer and response to treatment[J]. Breast Cancer Res Treat, 2020, 179(2): 287-300. DOI: 10.1007/s10549-019-05472-w. |
[16] | Wu Z, Pfeiffer RM, Byrd DA, et al. Associations of circulating estrogens and estrogen metabolites with fecal and oral microbiome in postmenopausal women in the Ghana breast health study[J]. Microbiol Spectr, 2023, 11(4): e0157223. DOI: 10.1128/spectrum.01572-23. |
[17] | Simin J, Tamimi RM, Engstrand L, et al. Antibiotic use and the risk of breast cancer: a systematic review and dose-response Meta-analysis[J]. Pharmacol Res, 2020, 160: 105072. DOI: 10.1016/j.phrs.2020.105072. |
[18] | Xiao L, Chi D, Sheng G, et al. Inhibitory effects of UDP-glucuronosyltransferase(UGT) typical ligands against E. coli beta-glucuronidase(GUS)[J]. RSC Adv, 2020, 10(39): 22966-22971. DOI: 10.1039/d0ra02311f. |
[19] | Munteanu C, Schwartz B. Interactions between dietary antioxidants, dietary fiber and the gut microbiome: their putative role in inflammation and cancer[J]. Int J Mol Sci, 2024, 25(15): 8250. DOI: 10.3390/ijms25158250. |
[20] | Nakatsu G, Andreeva N, MacDonald MH, et al. Interactions between diet and gut microbiota in cancer[J]. Nat Microbiol, 2024, 9(7): 1644-1654. DOI: 10.1038/s41564-024-01736-4. |
[21] | Arnone AA, Wilson AS, Soto-Pantoja DR, et al. Diet modulates the gut microbiome, metabolism, and mammary gland inflammation to influence breast cancer risk[J]. Cancer Prev Res (Phila), 2024, 17(9): 415-428. DOI: 10.1158/1940-6207.CAPR-24-0055. |
[22] |
Dutta RK, Abu YF, Tao J, et al. Altered gut microbiome drives heightened pain sensitivity in a murine model of metastatic triple-negative breast cancer[J]. Am J Cancer Res, 2024, 14(1): 274-299. DOI: 10.62347/LUJF9626.
pmid: 38323292 |
[23] | Gur C, Maalouf N, Shhadeh A, et al. Fusobacterium nucleatum supresses anti-tumor immunity by activating CEACAM1[J]. Oncoimmunology, 2019, 8(6): e1581531. DOI: 10.1080/2162402X.2019.1581531. |
[24] | Dohrn G. Gut microbes linked to fatty diet drive tumour growth[J]. Nature, 2024, In press. DOI: 10.1038/d41586-024-01443-4. |
[25] | Sampsell K, Hao D, Reimer RA. The gut microbiota: a potential gateway to improved health outcomes in breast cancer treatment and survivorship[J]. Int J Mol Sci, 2020, 21(23): 9239. DOI: 10.3390/ijms21239239. |
[26] |
Raza MH, Gul K, Arshad A, et al. Microbiota in cancer development and treatment[J]. J Cancer Res Clin Oncol, 2019, 145(1): 49-63. DOI: 10.1007/s00432-018-2816-0.
pmid: 30542789 |
[27] |
Eslami-S Z, Majidzadeh-A K, Halvaei S, et al. Microbiome and breast cancer: new role for an ancient population[J]. Front Oncol, 2020, 10: 120. DOI: 10.3389/fonc.2020.00120.
pmid: 32117767 |
[28] | Jaye K, Li CG, Chang D, et al. The role of key gut microbial metabolites in the development and treatment of cancer[J]. Gut Microbes, 2022, 14(1): 2038865. DOI: 10.1080/19490976.2022.2038865. |
[29] | Su X, Gao Y, Yang R. Gut microbiota derived bile acid metabolites maintain the homeostasis of gut and systemic immunity[J]. Front Immunol, 2023, 14: 1127743. DOI: 10.3389/fimmu.2023.1127743. |
[30] | Urbaniak C, Gloor GB, Brackstone M, et al. The microbiota of breast tissue and its association with breast cancer[J]. Appl Environ Microbiol, 2016, 82(16): 5039-5048. DOI: 10.1128/AEM.01235-16. |
[31] | Meng Z, Ye Z, Zhu P, et al. New developments and opportunities of microbiota in treating breast cancers[J]. Front Microbiol, 2022, 13: 818793. DOI: 10.3389/fmicb.2022.818793. |
[32] |
Wong CC, Yu J. Gut microbiota in colorectal cancer development and therapy[J]. Nat Rev Clin Oncol, 2023, 20(7): 429-452. DOI: 10.1038/s41571-023-00766-x.
pmid: 37169888 |
[33] | Zhang YX, Liang ZZ, Li YQ, et al. Association between weight change and breast cancer prognosis[J]. Breast Cancer Res Treat, 2022, 193(3): 677-684. DOI: 10.1007/s10549-022-06592-6. |
[34] | Summer M, Sajjad A, Ali S, et al. Exploring the underlying correlation between microbiota, immune system, hormones, and inflammation with breast cancer and the role of probiotics, prebiotics and postbiotics[J]. Arch Microbiol, 2024, 206(4): 145. DOI: 10.1007/s00203-024-03868-x. |
[35] | Ma C, Wasti S, Huang S, et al. The gut microbiome stability is altered by probiotic ingestion and improved by the continuous supplementation of galactooligosaccharide[J]. Gut Microbes, 2020, 12(1): 1785252. DOI: 10.1080/19490976.2020.1785252. |
[36] | Mendoza L. Potential effect of probiotics in the treatment of breast cancer[J]. Oncol Rev, 2019, 13(2): 422. DOI: 10.4081/oncol.2019.422. |
[37] | Vincenzi A, Goettert MI, Volken de Souza CF. An evaluation of the effects of probiotics on tumoral necrosis factor (TNF-α) signa-ling and gene expression[J]. Cytokine Growth Factor Rev, 2021, 57: 27-38. DOI: 10.1016/j.cytogfr.2020.10.004. |
[38] | Perales-Puchalt A, Perez-Sanz J, Payne KK, et al. Frontline science: microbiota reconstitution restores intestinal integrity after cisplatin therapy[J]. J Leukoc Biol, 2018, 103(5): 799-805. DOI: 10.1002/JLB.5HI1117-446RR. |
[39] | Fessler J, Matson V, Gajewski TF. Exploring the emerging role of the microbiome in cancer immunotherapy[J]. J Immunother Cancer, 2019, 7(1): 108. DOI: 10.1186/s40425-019-0574-4. |
[40] |
Vafa S, Zarrati M, Malakootinejad M, et al. Calorie restriction and synbiotics effect on quality of life and edema reduction in breast cancer-related lymphedema, a clinical trial[J]. Breast, 2020, 54: 37-45. DOI: 10.1016/j.breast.2020.08.008.
pmid: 32898787 |
[41] | Thet D, Areepium N, Siritientong T. Effects of probiotics on chemotherapy-induced diarrhea[J]. Nutr Cancer, 2023, 75(10): 1811-1821. DOI: 10.1080/01635581.2023.2267779. |
[42] |
Shiao SL, Kershaw KM, Limon JJ, et al. Commensal bacteria and fungi differentially regulate tumor responses to radiation therapy[J]. Cancer Cell, 2021, 39(9): 1202-1213, e6. DOI: 10.1016/j.ccell.2021.07.002.
pmid: 34329585 |
[43] |
Juan Z, Chen J, Ding B, et al. Probiotic supplement attenuates chemotherapy-related cognitive impairment in patients with breast cancer: a randomised, double-blind, and placebo-controlled trial[J]. Eur J Cancer, 2022, 161: 10-22. DOI: 10.1016/j.ejca.2021.11.006.
pmid: 34896904 |
[44] | Mirzadeh MA, Eslami M, Ghanbari A, et al. Coadministration of doxorubicin with vitamin D3, Lactobacillus acidophilus, and Lactobacillus casei in the 4T1 mouse model of breast cancer: anticancer and enteroprotective effects[J]. Med Oncol, 2024, 41(5): 111. DOI: 10.1007/s12032-024-02346-0. |
[45] |
Federici S, Kredo-Russo S, Valdés-Mas R, et al. Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation[J]. Cell, 2022, 185(16): 2879-2898, e24. DOI: 10.1016/j.cell.2022.07.003.
pmid: 35931020 |
[46] | Álvarez-Mercado AI, Del Valle Cano A, Fernández MF, et al. Gut microbiota and breast cancer: the dual role of microbes[J]. Cancers (Basel), 2023, 15(2): 443. DOI: 10.3390/cancers15020443. |
[47] | Yi DY, Kim SY. Human breast milk composition and function in human health: from nutritional components to microbiome and microRNAs[J]. Nutrients, 2021, 13(9): 3094. DOI: 10.3390/nu13093094. |
[48] |
Parida S, Wu S, Siddharth S, et al. A procarcinogenic colon microbe promotes breast tumorigenesis and metastatic progression and concomitantly activates notch and β-catenin axes[J]. Cancer Discov, 2021, 11(5): 1138-1157. DOI: 10.1158/2159-8290.CD-20-0537.
pmid: 33408241 |
[49] | Parhi L, Alon-Maimon T, Sol A, et al. Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression[J]. Nat Commun, 2020, 11(1): 3259. DOI: 10.1038/s41467-020-16967-2. |
[50] | Devoy C, Flores Bueso Y, Tangney M. Understanding and harnessing triple-negative breast cancer-related microbiota in oncology[J]. Front Oncol, 2022, 12: 1020121. DOI: 10.3389/fonc.2022.1020121. |
[51] | Bose D, Banerjee S, Singh RK, et al. Vascular endothelial growth factor encoded by Parapoxviruses can regulate metabolism and survival of triple negative breast cancer cells[J]. Cell Death Dis, 2020, 11(11): 996. DOI: 10.1038/s41419-020-03203-4. |
[52] | Banerjee S, Wei Z, Tian T, et al. Prognostic correlations with the microbiome of breast cancer subtypes[J]. Cell Death Dis, 2021, 12(9): 831. DOI: 10.1038/s41419-021-04092-x. |
[53] | Zhang Y, Zhou M, Sun J. A novel prognostic signature and potential therapeutic drugs based on tumor immune microenvironment characterization in breast cancer[J]. Heliyon, 2023, 9(10): e20798. DOI: 10.1016/j.heliyon.2023.e20798. |
[54] | Naderi N, Mosahebi A, Williams NR. Microorganisms and breast cancer: an in-depth analysis of clinical studies[J]. Pathogens, 2023, 13(1): 6. DOI: 10.3390/pathogens13010006. |
[1] | Han Xiaoxu, Zhang Nan, Liu Shuai. Progress in the study of the pregnane X receptor in drug resistance in breast cancer [J]. Journal of International Oncology, 2024, 51(9): 590-594. |
[2] | Zhao Biao, Pu Qin, Yuan Meifang, Ma Lishuang, Li Han, Yang Yi, Sun Chaoxi. Dosimetric study of intensity-modulated radiotherapy and volumetric intensity modulated arc therapy based on the inner edge tangent field for radiotherapy after breast-conserving surgery of left-sided breast cancer [J]. Journal of International Oncology, 2024, 51(7): 441-447. |
[3] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[4] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[5] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[6] | Sa Qiang, Xu Hangcheng, Wang Jiayu. Advances in immunotherapy for breast cancer [J]. Journal of International Oncology, 2024, 51(4): 227-234. |
[7] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[8] | Chen Boguang, Wang Sugui, Zhang Yongjie. Role of serum cholinesterase and inflammatory markers in the prognosis of stage ⅠA -ⅢA breast cancer [J]. Journal of International Oncology, 2024, 51(2): 73-82. |
[9] | Tan Shuangxiu, Zhang Yidan, Wang Ying, Yu Pengli, Kong Wentao, Yao Jing, Chen Qiaoliang. Value of conventional ultrasound combined with shear wave elastography in differentiating non-mass ductal carcinoma in situ from invasive breast cancer [J]. Journal of International Oncology, 2024, 51(12): 743-748. |
[10] | Wang Li, Xiao Han, Huang Guofu. Mechanism of action and clinical significance of circular RNA in triple negative breast cancer [J]. Journal of International Oncology, 2024, 51(12): 774-778. |
[11] | Zhu Bin, Wan Tao, Xu Hua, Jia Hao, Chen Shixin. Value analysis of the prediction model based on multimodal MRI characteristics for the differential diagnosis of benign and malignant BI-RADS 4 types of breast tumors [J]. Journal of International Oncology, 2024, 51(11): 678-683. |
[12] | Chen Kunyan, Du Juan, Ji Yuwei, Gu Weiwei, Peng Hanzhi. Effects of irinotecan combined with XELOX regimen on immune status, intestinal microecology and prognostic risk in elderly patients with colorectal cancer [J]. Journal of International Oncology, 2024, 51(11): 690-695. |
[13] | Tao Jin, Kan Junnan, Yang Caixia, Liu Yan, Lyu Yijie, Wei Junhui, Li Xianglin. Progress of manganese-based nanomaterials in breast cancer diagnosis and treatment [J]. Journal of International Oncology, 2024, 51(10): 645-649. |
[14] | Gu Huayan, Zhu Teng, Guo Guilong. Breast microbiota and breast cancer: present and future [J]. Journal of International Oncology, 2024, 51(1): 55-58. |
[15] | Wang Jing, Xu Wenting. Value of NLR, CEA combined with coagulation indicators in the differential diagnosis of benign and malignant breast nodules with a diameter ≤ 1.0 cm [J]. Journal of International Oncology, 2023, 50(9): 520-526. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||