Journal of International Oncology ›› 2024, Vol. 51 ›› Issue (7): 464-467.doi: 10.3760/cma.j.cn371439-20231008-00076
• Reviews • Previous Articles Next Articles
Received:
2023-10-08
Revised:
2024-02-16
Online:
2024-07-08
Published:
2024-08-14
Contact:
Zhang Jun, Email: dr.junzhang@njmu.edu.cn
Liu Jing, Zhang Jun. Progress in the study of redifferentiation therapy for radioactive iodine-refractory differentiated thyroid carcinoma[J]. Journal of International Oncology, 2024, 51(7): 464-467.
[1] | Haymart MR. Progress and challenges in thyroid cancer management[J]. Endocr Pract, 2021, 27(12): 1260-1263. DOI: 10.1016/j.eprac.2021.09.006. |
[2] |
Filetti S, Durante C, Hartl D, et al. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up[J]. Ann Oncol, 2019, 30(12): 1856-1883. DOI: 10.1093/annonc/mdz400.
pmid: 31987292 |
[3] | Liu JR, Liu YQ, Lin YS, et al. Radioactive iodine-refractory differentiated thyroid cancer and redifferentiation therapy[J]. Endocrinol Metab (Seoul), 2019, 34(3): 215-225. DOI: 10.3803/EnM.2019.34.3.215. |
[4] | Singh A, Ham J, Po JW, et al. The genomic landscape of thyroid cancer tumourigenesis and implications for immunotherapy[J]. Cells, 2021, 10(5): 1082. DOI:10.3390/cells10051082. |
[5] | Riesco-Eizaguirre G, Santisteban P, De la Vieja A. The complex regulation of NIS expression and activity in thyroid and extrathyroidal tissues[J]. Endocr Relat Cancer, 2021, 28(10): T141-T165. DOI: 10.1530/ERC-21-0217. |
[6] | Cazarin J, Dupuy C, Pires de Carvalho D. Redox homeostasis in thyroid cancer: implications in Na+/I- symporter (NIS) regulation[J]. Int J Mol Sci, 2022, 23(11): 35682803. DOI: 10.3390/ijms23116129. |
[7] |
Oh JM, Ahn BC. Molecular mechanisms of radioactive iodine refractoriness in differentiated thyroid cancer: impaired sodium iodide symporter (NIS) expression owing to altered signaling pathway activity and intracellular localization of NIS[J]. Theranostics, 2021, 11(13): 6251-6277. DOI: 10.7150/thno.57689.
pmid: 33995657 |
[8] | Hu JW, Yuan IJ, Mirshahidi S, et al. Thyroid carcinoma: phenotypic features, underlying biology and potential relevance for targeting therapy[J]. Int J Mol Sci, 2021, 22(4): 1950. DOI:10.3390/ijms22041950. |
[9] |
Cai X, Wang R, Tan J, et al. Mechanisms of regulating NIS transport to the cell membrane and redifferentiation therapy in thyroid cancer[J]. Clin Transl Oncol, 2021, 23(12): 2403-2414. DOI: 10.1007/s12094-021-02655-0.
pmid: 34100218 |
[10] |
Dunn LA, Sherman EJ, Baxi SS, et al. Vemurafenib redifferentiation of BRAF mutant, RAI-refractory thyroid cancers[J]. J Clin Endocrinol Metab, 2019, 104(5): 1417-1428. DOI:10.1210/jc.2018-01478.
pmid: 30256977 |
[11] | Ho AL, Dedecjus M, Wirth LJ, et al. Selumetinib plus adjuvant radioactive iodine in patients with high-risk differentiated thyroid cancer: a phase Ⅲ, randomized, placebo-controlled trial (ASTRA)[J]. J Clin Oncol, 2022, 40(17): 1870-1878. DOI: 10.1200/JCO.21.00714. |
[12] |
Jaber T, Waguespack SG, Cabanillas ME, et al. Targeted therapy in advanced thyroid cancer to resensitize tumors to radioactive iodine[J]. J Clin Endocrinol Metab, 2018, 103(10): 3698-3705. DOI: 10.1210/jc.2018-00612.
pmid: 30032208 |
[13] |
Iravani A, Solomon B, Pattison DA, et al. Mitogen-activated protein kinase pathway inhibition for redifferentiation of radioiodine refractory differentiated thyroid cancer: an evolving protocol[J]. Thyroid, 2019, 29(11): 1634-1645. DOI: 10.1089/thy.2019.0143.
pmid: 31637953 |
[14] | Leboulleux S, Do Cao C, Zerdoud S, et al. A phase Ⅱ redifferentiation trial with dabrafenib-trametinib and 131I in metastatic radioactive iodine refractory BRAF p.V600E-mutated differentiated thyroid cancer[J]. Clin Cancer Res, 2023, 29(13): 2401-2409. DOI: 10.1158/1078-0432.CCR-23-0046. |
[15] |
Tchekmedyian V, Dunn L, Sherman E, et al. Enhancing radioiodine incorporation in BRAF-mutant, radioiodine-refractory thyroid cancers with vemurafenib and the anti-ErbB3 monoclonal antibody CDX-3379: results of a pilot clinical trial[J]. Thyroid, 2022, 32(3): 273-282. DOI: 10.1089/thy.2021.0565.
pmid: 35045748 |
[16] | National Cancer Institute (NCI). Dabrafenib and lapatinib in treating patients with refractory thyroid cancer that cannot be removed by surgery[EB/OL]. (2023-09-20) [2023-12-21]. https://classic.clinicaltrials.gov/ct2/show/NCT01947023. |
[17] | Nikitski AV, Condello V, Divakaran SS, et al. Inhibition of ALK-signaling overcomes STRN-ALK-induced downregulation of the sodium iodine symporter and restores radioiodine uptake in thyroid cells[J]. Thyroid, 2023, 33(4): 464-473. DOI: 10.1089/thy.2022.0533. |
[18] | Song J, Qiu W, Deng X, et al. A somatic mutation of RasGRP3 decreases Na+/I- symporter expression in metastases of radioactive iodine-refractory thyroid cancer by stimulating the Akt signaling pathway[J]. Am J Cancer Res, 2018, 8(9): 1847-1855. |
[19] | Hanna GJ, Busaidy NL, Chau NG, et al. Genomic correlates of response to everolimus in aggressive radioiodine-refractory thyroid cancer: a phase Ⅱ study[J]. Clin Cancer Res, 2018, 24(7): 1546-1553. DOI: 10.1158/1078-0432.CCR-17-2297. |
[20] |
Zhang K, Li C, Liu J, et al. DNA methylation alterations as therapeutic prospects in thyroid cancer[J]. J Endocrinol Invest, 2019, 42(4): 363-370. DOI: 10.1007/s40618-018-0922-0.
pmid: 29992502 |
[21] | Fu H, Cheng L, Sa R, et al. Combined tazemetostat and MAPKi enhances differentiation of papillary thyroid cancer cells harbou-ring BRAFV600E by synergistically decreasing global trimethylation of H3K27[J]. J Cell Mol Med, 2020, 24(6): 3336-3345. DOI: 10.1111/jcmm.15007. |
[22] | Wächter S, Damanakis AI, Elxnat M, et al. Epigenetic modifications in thyroid cancer cells restore NIS and radio-iodine uptake and promote cell death[J]. J Clin Med, 2018, 7(4): 61. DOI:10.3390/jcm7040061. |
[23] | Groener JB, Gelen D, Mogler C, et al. BRAFV600E and retinoic acid in radioiodine-refractory papillary thyroid cancer[J]. Horm Metab Res, 2019, 51(1): 69-75. DOI: 10.1055/a-0765-9078. |
[24] |
Pak K, Shin S, Kim SJ, et al. Response of retinoic acid in patients with radioactive iodine-refractory thyroid cancer: a meta-analysis[J]. Oncol Res Treat, 2018, 41(3): 100-104. DOI: 10.1159/000484206.
pmid: 29485411 |
[1] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[2] | Wang Peixin, Zhao Jun, Xu Shihong, Jiang Zhaoyang, Wang Xiaoqiang, Yang Hongjuan. Progress of ferroptosis-related mechanisms in osteosarcoma [J]. Journal of International Oncology, 2024, 51(5): 308-311. |
[3] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[4] | Huang Hui, Ding Jianghua. Advances in targeting FGFR2 for treatment of advanced cholangiocarcinoma [J]. Journal of International Oncology, 2023, 50(9): 569-573. |
[5] | Zhang Jinnan, Liu Bangqing, Li Jun, Liu Xiaohui. Research on BHLHE40 targets HMGA2 to reduce the sensitivity of thyroid cancer cells to cisplatin through activating the oxidative phosphorylation pathway [J]. Journal of International Oncology, 2023, 50(7): 398-406. |
[6] | Li Qingshan, Xie Xin, Zhang Nan, Liu Shuai. Research progress on the application of combining radiotherapy and systemic therapy in breast cancer [J]. Journal of International Oncology, 2023, 50(6): 362-367. |
[7] | Liu Li, Zhu Siqi, Sun Mengying, He Jingdong. Progress of PARP inhibitors in targeted therapy of small cell lung cancer [J]. Journal of International Oncology, 2023, 50(6): 368-372. |
[8] | Liu Bohan, Huang Junxing. Research progress of solute carriers related genes in malignant tumors [J]. Journal of International Oncology, 2023, 50(5): 280-284. |
[9] | Zhu Jun, Huang Meijin, Li Yuan, Liu Zegang, Xun Xin, Chen Hong. Research progress on targeted therapy of breast cancer with low expression of HER2 [J]. Journal of International Oncology, 2023, 50(4): 236-240. |
[10] | Deng Lili, Duan Xingyu, Li Baozhong. Advances of anti-HER2 targeted drugs and combined therapeutic regimens for gastric and esophagogastic adenocarcinoma [J]. Journal of International Oncology, 2023, 50(12): 751-757. |
[11] | Liu Shaoping, Luo Hanchuan, Lin Shuhan, Luo Jiahui. Current status and research progress of interventional and systemic therapy for advanced hepatocellular carcinoma [J]. Journal of International Oncology, 2023, 50(12): 758-762. |
[12] | Jiang Shan, Xu Ximing. Recent progresses of targeted therapy and immunotherapy of hepatocellular carcinoma [J]. Journal of International Oncology, 2023, 50(11): 688-695. |
[13] | Jiang Shan, Xu Yangtao, Liu Xin, Chen Wenliang, Xu Ximing. Predictive value of baseline peripheral blood inflammatory biomarkers for prognosis in patients with advanced hepatocellular carcinoma treated with immunotherapy combined with targeted therapy [J]. Journal of International Oncology, 2023, 50(10): 600-607. |
[14] | Zhang Jingxian, Su Jianfei, Wei Xueqin, Yi Dan, Li Xiaojiang. Treatment status of non-small cell lung cancer with METexon14 skipping mutation [J]. Journal of International Oncology, 2023, 50(1): 37-41. |
[15] | Song Jia, Hu Qinyong. Application of TACE combined with molecular targeted therapy and immunotherapy in BCLC B/C hepatocellular carcinoma [J]. Journal of International Oncology, 2022, 49(9): 550-554. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||