Journal of International Oncology ›› 2024, Vol. 51 ›› Issue (2): 119-122.doi: 10.3760/cma.j.cn371439-20230612-00018
• Reviews • Previous Articles Next Articles
Teng Yuan, Li Lijuan(), Zhang Liansheng()
Received:
2023-06-12
Revised:
2023-12-14
Online:
2024-02-08
Published:
2024-04-03
Contact:
Zhang Liansheng,Email:Supported by:
Teng Yuan, Li Lijuan, Zhang Liansheng. Progress of MCL-1 and its inhibitors in hematologic malignancies[J]. Journal of International Oncology, 2024, 51(2): 119-122.
[1] |
Gupta VA, Ackley J, Kaufman JL, et al. BCL2 family inhibitors in the biology and treatment of multiple myeloma[J]. Blood Lymphat Cancer, 2021, 11: 11-24. DOI: 10.2147/BLCTT.S245191.
pmid: 33737856 |
[2] | Wei AH, Roberts AW, Spencer A, et al. Targeting MCL-1 in hematologic malignancies: rationale and progress[J]. Blood Rev, 2020, 44: 100672. DOI: 10.1016/j.blre.2020.100672. |
[3] |
Slomp A, Moesbergen LM, Gong JN, et al. Multiple myeloma with 1q21 amplification is highly sensitive to MCL-1 targeting[J]. Blood Adv, 2019, 3(24): 4202-4214. DOI: 10.1182/bloodadvances.2019000702.
pmid: 31856269 |
[4] |
Gupta VA, Matulis SM, Conage-Pough JE, et al. Bone marrow microenvironment-derived signals induce Mcl-1 dependence in multiple myeloma[J]. Blood, 2017, 129(14): 1969-1979. DOI: 10.1182/blood-2016-10-745059.
pmid: 28151428 |
[5] | Algarín EM, Quwaider D, Campos-Laborie FJ, et al. Stroma-mediated resistance to S63845 and venetoclax through MCL-1 and BCL-2 expression changes induced by miR-193b-3p and miR-21-5p dysregulation in multiple myeloma[J]. Cells, 2021, 10(3): 559. DOI: 10.3390/cells10030559. |
[6] |
Gomez-Bougie P, Maiga S, Tessoulin B, et al. BH3-mimetic toolkit guides the respective use of BCL2 and MCL1 BH3-mimetics in myeloma treatment[J]. Blood, 2018, 132(25): 2656-2669. DOI: 10.1182/blood-2018-03-836718.
pmid: 30309889 |
[7] | Algarín EM, Díaz-Tejedor A, Mogollón P, et al. Preclinical evaluation of the simultaneous inhibition of MCL-1 and BCL-2 with the combination of S63845 and venetoclax in multiple myeloma[J]. Haematologica, 2020, 105(3): e116-e120. DOI: 10.3324/haematol.2018.212308. |
[8] | Tagoug A, Safra I. The impact of panobinostat on cell death in combination with S63845 in multiple myeloma cells[J]. Indian J Hematol Blood Transfus, 2023, 39(2): 245-257. DOI: 10.1007/s12288-022-01584-4. |
[9] |
Szlávik Z, Ondi L, Csékei M, et al. Structure-guided discovery of a selective Mcl-1 inhibitor with cellular activity[J]. J Med Chem, 2019, 62(15): 6913-6924. DOI: 10.1021/acs.jmedchem.9b00134.
pmid: 31339316 |
[10] | ClinicalTrials. gov. Phase Ⅰ study of MIK665, a Mcl-1 inhibitor, in patients with refractory or relapsed lymphoma or multiple myeloma[EB/OL]. (2021-08-03)[2023-05-18]. https://classic.clinicaltrials.gov/ct2/show/NCT02992483. |
[11] |
Kadia TM, Kantarjian HM, Konopleva M. Myeloid cell leukemia-1 dependence in acute myeloid leukemia: a novel approach to patient therapy[J]. Oncotarget, 2019, 10(12): 1250-1265. DOI: 10.18632/oncotarget.26579.
pmid: 30815228 |
[12] |
Ewald L, Dittmann J, Vogler M, et al. Side-by-side comparison of BH3-mimetics identifies MCL-1 as a key therapeutic target in AML[J]. Cell Death Dis, 2019, 10(12): 917. DOI: 10.1038/s41419-019-2156-2.
pmid: 31801941 |
[13] | Zhang Q, Riley-Gillis B, Han L, et al. Activation of RAS/MAPK pathway confers MCL-1 mediated acquired resistance to BCL-2 inhibitor venetoclax in acute myeloid leukemia[J]. Signal Transduct Target Ther, 2022, 7(1): 51. DOI: 10.1038/s41392-021-00870-3. |
[14] |
Wang Q, Hao S. A-1210477, a selective MCL-1 inhibitor, overcomes ABT-737 resistance in AML[J]. Oncol Lett, 2019, 18(5): 5481-5489. DOI: 10.3892/ol.2019.10891.
pmid: 31612056 |
[15] |
Tron AE, Belmonte MA, Adam A, et al. Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia[J]. Nat Commun, 2018, 9(1): 5341. DOI: 10.1038/s41467-018-07551-w.
pmid: 30559424 |
[16] | Liu S, Qiao X, Wu S, et al. c-Myc plays a critical role in the antileukemic activity of the Mcl-1-selective inhibitor AZD5991 in acute myeloid leukemia[J]. Apoptosis, 2022, 27(11/12): 913-928. DOI: 10.1007/s10495-022-01756-7. |
[17] | Carter BZ, Mak PY, Tao W, et al. Targeting MCL-1 dysregulates cell metabolism and leukemia-stroma interactions and resensitizes acute myeloid leukemia to BCL-2 inhibition[J]. Haematologica, 2022, 107(1): 58-76. DOI: 10.3324/haematol.2020.260331. |
[18] | ClinicalTrials. gov. Study of AZD5991 alone or in combination with venetoclax in relapsed or refractory haematologic malignancies[EB/OL]. (2022-09-23)[2023-05-18]. https://clinicaltrials.gov/study/NCT03218683?tab=history&a=36. |
[19] |
Wang Y, Wang D, Wang Y, et al. Synergistic activity and mechanism of cytarabine and MCL-1 inhibitor AZD5991 against acute myeloid leukemia[J]. Neoplasma, 2023, 70(2): 287-293. DOI: 10.4149/neo_2023_221217N1185.
pmid: 36812234 |
[20] | Al-Odat O, von Suskil M, Chitren R, et al. Mcl-1 inhibition: ma-naging malignancy in multiple myeloma[J]. Front Pharmacol, 2021, 12: 699629. DOI: 10.3389/fphar.2021.699629. |
[21] |
Caenepeel S, Brown SP, Belmontes B, et al. AMG 176, a selective MCL1 inhibitor, is effective in hematologic cancer models alone and in combination with established therapies[J]. Cancer Discov, 2018, 8(12): 1582-1597. DOI: 10.1158/2159-8290.CD-18-0387.
pmid: 30254093 |
[22] | ClinicalTrials. gov. AMG 176 first in human trial in participants with relapsed or refractory multiple myeloma and participants with relapsed or refractory acute myeloid leukemia[EB/OL]. (2016-02-05)[2023-05-18]. https://classic.clinicaltrials.gov/ct2/show/NCT02675452. |
[23] | Hormi M, Birsen R, Belhadj M, et al. Pairing MCL-1 inhibition with venetoclax improves therapeutic efficiency of BH3-mimetics in AML[J]. Eur J Haematol, 2020, 105(5): 588-596. DOI: 10.1111/ejh.13492. |
[24] | Liu F, Zhao Q, Su Y, et al. Cotargeting of Bcl-2 and Mcl-1 shows promising antileukemic activity against AML cells including those with acquired cytarabine resistance[J]. Exp Hematol, 2022, 105: 39-49. DOI: 10.1016/j.exphem.2021.10.006. |
[25] | ClinicalTrials. gov. Phase Ⅰ dose escalation study of intravenously administered S64315 in combination with orally administered venetoclax in patients with acute myeloid leukaemia[EB/OL]. (2023-07-25)[2023-08-22]. https://classic.clinicaltrials.gov/ct2/show/NCT03672695. |
[26] | Phillips DC, Xiao Y, Lam LT, et al. Loss in MCL-1 function sensitizes non-Hodgkin's lymphoma cell lines to the BCL-2-selective inhibitor venetoclax (ABT-199)[J]. Blood Cancer J, 2016, 6(3): e403. DOI: 10.1038/bcj.2016.12. |
[27] | Ennishi D, Mottok A, Ben-Neriah S, et al. Genetic profiling of MYC and BCL2 in diffuse large B-cell lymphoma determines cell-of-origin-specific clinical impact[J]. Blood, 2017, 129(20): 2760-2770. DOI: 10.1182/blood-2016-11-747022. |
[28] | Lasater EA, Amin DN, Bannerji R, et al. Targeting MCL-1 and BCL-2 with polatuzumab vedotin and venetoclax overcomes treatment resistance in R/R non-Hodgkin lymphoma: results from preclinical models and a phase Ⅰb study[J]. Am J Hematol, 2023, 98(3): 449-463. DOI: 10.1002/ajh.26809. |
[29] |
Fernández-Marrero Y, Spinner S, Kaufmann T, et al. Survival control of malignant lymphocytes by anti-apoptotic MCL-1[J]. Leukemia, 2016, 30(11): 2152-2159. DOI: 10.1038/leu.2016.213.
pmid: 27479182 |
[30] | Liu T, Lam V, Thieme E, et al. Pharmacologic targeting of Mcl-1 induces mitochondrial dysfunction and apoptosis in B-cell lymphoma cells in a TP53- and BAX-dependent manner[J]. Clin Cancer Res, 2021, 27(17): 4910-4922. DOI: 10.1158/1078-0432.CCR-21-0464. |
[31] | ClinicalTrials. gov. A study of venetoclax and AMG 176 in patients with relapsed/refractory hematologic malignancies[EB/OL]. (2021-12-07)[2023-04-07]. https://classic.clinicaltrials.gov/ct2/show/NCT03797261. |
[32] |
Brennan MS, Chang C, Tai L, et al. Humanized Mcl-1 mice enable accurate preclinical evaluation of MCL-1 inhibitors destined for clinical use[J]. Blood, 2018, 132(15): 1573-1583. DOI: 10.1182/blood-2018-06-859405.
pmid: 30139826 |
[33] | ClinicalTrials. gov. Safety, tolerability, pharmacokinetics and efficacy of AMG 397 in subjects with selected relapsed or refractory hematological malignancies[EB/OL]. (2023-04-12)[2023-05-18]. https://classic.clinicaltrials.gov/ct2/show/NCT03465540. |
[34] |
Yi X, Sarkar A, Kismali G, et al. AMG-176, an Mcl-1 antagonist, shows preclinical efficacy in chronic lymphocytic leukemia[J]. Clin Cancer Res, 2020, 26(14): 3856-3867. DOI: 10.1158/1078-0432.CCR-19-1397.
pmid: 31937611 |
[35] | ClinicalTrials. gov. Phase Ⅰ study of S64315 administred intravenously in patients with acute myeloid leukaemia or myelodysplastic syndrome[EB/OL]. (2022-05-18)[2023-05-18]. https://classic.clinicaltrials.gov/ct2/show/NCT02979366. |
[1] | Sa Qiang, Xu Hangcheng, Wang Jiayu. Advances in immunotherapy for breast cancer [J]. Journal of International Oncology, 2024, 51(4): 227-234. |
[2] | Qian Xiaotao, Shi Ziyi, Hu Ge. A real-world clinical study of immunocheckpoint inhibitor maintenance therapy after radical radiotherapy and chemotherapy in stage Ⅲ-ⅣA esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2024, 51(3): 151-156. |
[3] | Xie Shuping, Sun Yahong, Wang Chao. Prediction of efficacy of early-stage tumor markers combined with NLR and PLR for immunotherapy in gastric cancer [J]. Journal of International Oncology, 2024, 51(3): 157-165. |
[4] | Chen Xinyi, Weng Yiming, Wei Jiayan, Wang Jinsong, Peng Min. Advances in immune checkpoint inhibitors in the treatment of recurrent or metastatic head and neck squamous cell carcinoma [J]. Journal of International Oncology, 2023, 50(9): 553-557. |
[5] | Deng Juanjun, Zhao Dayong, Li Miao. Adverse reactions and risk factors of immune checkpoint inhibitors in the treatment of non-small cell lung cancer [J]. Journal of International Oncology, 2023, 50(9): 564-568. |
[6] | Zhang Lu, Jiang Hua, Lin Zhou, Ma Chenying, Xu Xiaoting, Wang Lili, Zhou Juying. Analysis of curative effect and prognosis of immune checkpoint inhibitor in the treatment of recurrent and metastatic cervical cancer [J]. Journal of International Oncology, 2023, 50(8): 475-483. |
[7] | Shao Huifang, Wang Xuehong, Lu Yongfu. Mechanism of action and clinical significance of CST1 in the progression of gastric cancer [J]. Journal of International Oncology, 2023, 50(8): 489-492. |
[8] | Wang Jun, Rong Lei, Huang Jing, Meng Jingye, Guo Zhi. Diagnostic value of transbronchial lung biopsy and bronchoalveolar lavage in pulmonary complications in patients with hematological tumors [J]. Journal of International Oncology, 2023, 50(7): 419-424. |
[9] | Guo Ciliang, Jiang Chunping, Wu Junhua. Gut microbiome and tumor immunotherapy [J]. Journal of International Oncology, 2023, 50(7): 432-436. |
[10] | Liu Li, Zhu Siqi, Sun Mengying, He Jingdong. Progress of PARP inhibitors in targeted therapy of small cell lung cancer [J]. Journal of International Oncology, 2023, 50(6): 368-372. |
[11] | Gu Anqin, Long Jinhua, Jin Feng. Clinical research progress of immunotherapy for nasopharyngeal carcinoma [J]. Journal of International Oncology, 2023, 50(5): 299-303. |
[12] | Wang Yaqian, Du Yiwei, Wang Xing, Jia Junmei. Prognostic predictors of immunotherapy in patients with small cell lung cancer [J]. Journal of International Oncology, 2023, 50(3): 179-182. |
[13] | Ji Wei, Guan Quanlin, Chen Yarui, Jiao Fuzhi, Luo Qianwen. Correlation between blood lipid level and gastric cancer [J]. Journal of International Oncology, 2023, 50(3): 183-185. |
[14] | Cao Xiaohui, Yu Hong, Li Wanhu. Application of CT-based radiomics analysis in predicting and identifying of treatment-associated pneumonitis [J]. Journal of International Oncology, 2023, 50(2): 107-111. |
[15] | Liao Lihua, Wang Shaohong, Chen Hongcai, Zhao Yongqiang. Value of cell paraffin block immunohistochemistry and pleural effusion CRKL and MIC-1 in the diagnosis of malignant pleural effusion [J]. Journal of International Oncology, 2023, 50(2): 71-75. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||