
Journal of International Oncology ›› 2023, Vol. 50 ›› Issue (10): 618-621.doi: 10.3760/cma.j.cn371439-20230428-00117
• Reviews • Previous Articles Next Articles
					
													Liu Xiaojie1,2, Huang Junxing1(
)
												  
						
						
						
					
				
Received:2023-04-28
															
							
																	Revised:2023-07-28
															
							
															
							
																	Online:2023-10-08
															
							
																	Published:2023-11-08
															
						Contact:
								Huang Junxing   
																	E-mail:hjxtz@sina.cn
																					Supported by:Liu Xiaojie, Huang Junxing. Research progress of NADPH oxidase 2 in malignant tumors[J]. Journal of International Oncology, 2023, 50(10): 618-621.
| [1] | Grauers Wiktorin H, Aydin E, Hellstrand K, et al. NOX2-derived reactive oxygen species in cancer[J]. Oxid Med Cell Longev, 2020: 7095902. DOI: 10.1155/2020/7095902. | 
| [2] | Schröder K. NADPH oxidases: current aspects and tools[J]. Redox Biol, 2020, 34: 101512. DOI: 10.1016/j.redox.2020.101512. | 
| [3] | Vermot A, Petit-Härtlein I, Smith SME, et al. NADPH oxidases (NOX): an overview from discovery, molecular mechanisms to physiology and pathology[J]. Antioxidants (Basel), 2021, 10(6): 890. DOI: 10.3390/antiox10060890. | 
| [4] | Xu L, Balzarolo M, Robinson EL, et al. NOX1 mediates metabolic heart disease in mice and is upregulated in monocytes of humans with diastolic dysfunction[J]. Cardiovasc Res, 2022, 118(14): 2973-2984. DOI: 10.1093/cvr/cvab349. | 
| [5] | Mohri H, Ninoyu Y, Sakaguchi H, et al. Nox3-derived superoxide in cochleae induces sensorineural hearing loss[J]. J Neurosci, 2021, 41(21): 4716-4731. DOI: 10.1523/JNEUROSCI.2672-20.2021. | 
| [6] |  
											 Trevelin SC, Shah AM, Lombardi G. Beyond bacterial killing: NADPH oxidase 2 is an immunomodulator[J]. Immunol Lett, 2020, 221: 39-48. DOI: 10.1016/j.imlet.2020.02.009. 
																							 pmid: 32092360  | 
										
| [7] |  
											 Shimony S, Stahl M, Stone RM. Acute myeloid leukemia: 2023 update on diagnosis, risk-stratification, and management[J]. Am J Hematol, 2023, 98(3): 502-526. DOI: 10.1002/ajh.26822. 
																							 pmid: 36594187  | 
										
| [8] | Jones CL. NOX2: a determinant of acute myeloid leukemia survival[J]. Haematologica, 2022, 107(11): 2530-2531. DOI: 10.3324/haematol.2022.280677. | 
| [9] |  
											 Paolillo R, Boulanger M, Gâtel P,  et al. The NADPH oxidase NOX2 is a marker of adverse prognosis involved in chemoresistance of acute myeloid leukemias[J]. Haematologica, 2022, 107(11): 2562-2575. DOI: 10.3324/haematol.2021.279889. 
																							 pmid: 35172562  | 
										
| [10] |  
											 Ijurko C, González-García N, Galindo-Villardón P,  et al. A 29-gene signature associated with NOX2 discriminates acute myeloid leukemia prognosis and survival[J]. Am J Hematol, 2022, 97(4): 448-457. DOI: 10.1002/ajh.26477. 
																							 pmid: 35073432  | 
										
| [11] |  
											 Robinson AJ, Hopkins GL, Rastogi N,  et al. Reactive oxygen species drive proliferation in acute myeloid leukemia via the glycolytic regulator PFKFB3[J]. Cancer Res, 2020, 80(5): 937-949. DOI: 10.1158/0008-5472.CAN-19-1920. 
																							 pmid: 31862780  | 
										
| [12] | Germon ZP, Sillar JR, Mannan A, et al. Blockade of ROS production inhibits oncogenic signaling in acute myeloid leukemia and amplifies response to precision therapies[J]. Sci Signal, 2023, 16(778): eabp9586. DOI: 10.1126/scisignal.abp9586. | 
| [13] |  
											 Cao JY, Mansouri S, Frappier L. Changes in the nasopharyngeal carcinoma nuclear proteome induced by the EBNA1 protein of Epstein-Barr virus reveal potential roles for EBNA1 in metastasis and oxidative stress responses[J]. J Virol, 2012, 86(1): 382-394. DOI: 10.1128/JVI.05648-11. 
																							 pmid: 22013061  | 
										
| [14] | Kim SM, Hur DY, Hong SW, et al. EBV-encoded EBNA1 regulates cell viability by modulating miR34a-NOX2-ROS signaling in gastric cancer cells[J]. Biochem Biophys Res Commun, 2017, 494(3/4): 550-555. DOI: 10.1016/j.bbrc.2017.10.095. | 
| [15] | Wang P, Shi Q, Deng WH, et al. Relationship between expression of NADPH oxidase 2 and invasion and prognosis of human gastric cancer[J]. World J Gastroenterol, 2015, 21(20): 6271-6279. DOI: 10.3748/wjg.v21.i20.6271. | 
| [16] | Wang Z, Tang T, Wang S, et al. Aloin inhibits the proliferation and migration of gastric cancer cells by regulating NOX2-ROS-mediated pro-survival signal pathways[J]. Drug Des Devel Ther, 2020, 14: 145-155. DOI: 10.2147/DDDT.S219247. | 
| [17] | You X, Ma M, Hou G, et al. Gene expression and prognosis of NOX family members in gastric cancer[J]. Onco Targets Ther, 2018, 11: 3065-3074. DOI: 10.2147/OTT.S161287. | 
| [18] | Luo M, Yang X, Chen HN, et al. Drug resistance in colorectal cancer: an epigenetic overview[J]. Biochim Biophys Acta Rev Cancer, 2021, 1876(2): 188623. DOI: 10.1016/j.bbcan.2021.188623. | 
| [19] |  
											 Banskota S, Regmi SC, Kim JA. NOX1 to NOX2 Switch deactivates AMPK and induces invasive phenotype in colon cancer cells through overexpression of MMP-7[J]. Mol Cancer, 2015, 14: 123. DOI: 10.1186/s12943-015-0379-0. 
																							 pmid: 26116564  | 
										
| [20] |  
											 Takiguchi K, Shimizu H, Shoda K,  et al. The expression and role of NADPH oxidase 2 in colon cancer[J]. Anticancer Res, 2023, 43(6): 2601-2608. DOI: 10.21873/anticanres.16427. 
																							 pmid: 37247898  | 
										
| [21] |  
											 Guo Y, Han B, Luo K,  et al. NOX2-ROS-HIF-1α signaling is critical for the inhibitory effect of oleanolic acid on rectal cancer cell proliferation[J]. Biomed Pharmacother, 2017, 85: 733-739. DOI: 10.1016/j.biopha.2016.11.091. 
																							 pmid: 27938946  | 
										
| [22] |  
											 Waghela BN, Vaidya FU, Pathak C. Upregulation of NOX-2 and Nrf-2 promotes 5-fluorouracil resistance of human colon carcinoma (HCT-116) cells[J]. Biochemistry (Mosc), 2021, 86(3): 262-274. DOI: 10.1134/S0006297921030044. 
																							 pmid: 33838628  | 
										
| [23] | Yang WH, Huang Z, Wu J, et al. A TAZ-ANGPTL4-NOX2 axis regulates ferroptotic cell death and chemoresistance in epithelial ovarian cancer[J]. Mol Cancer Res, 2020, 18(1): 79-90. DOI: 10.1158/1541-7786.MCR-19-0691. | 
| [24] | Yang WH, Chi JT. Hippo pathway effectors YAP/TAZ as novel determinants of ferroptosis[J]. Mol Cell Oncol, 2019, 7(1): 1699375. DOI: 10.1080/23723556.2019.1699375. | 
| [25] |  
											 Wang N, Song L, Xu Y,  et al. Loss of scribble confers cisplatin resistance during NSCLC chemotherapy via Nox2/ROS and Nrf2/PD-L1 signaling[J]. EBioMedicine, 2019, 47: 65-77. DOI: 10.1016/j.ebiom.2019.08.057. 
																							 pmid: 31495720  | 
										
| [26] | Zhan Y, Chen Q, Song Y, et al. Berbamine hydrochloride inhibits lysosomal acidification by activating Nox2 to potentiate chemotherapy-induced apoptosis via the ROS-MAPK pathway in human lung carcinoma cells[J]. Cell Biol Toxicol, 2023, 39(4): 1297-1317. DOI: 10.1007/s10565-022-09756-8. | 
| [27] | Zhao L, Chen X, Feng Y, et al. COX7A1 suppresses the viability of human non-small cell lung cancer cells via regulating autophagy[J]. Cancer Med, 2019, 8(18): 7762-7773. DOI: 10.1002/cam4.2659. | 
| [28] | Liu Y, Han D, Ma Q, et al. Prognostic value of NOX2 as a potential biomarker for lung adenocarcinoma using TCGA and clinical validation[J]. Mol Med Rep, 2023, 27(2): 48. DOI: 10.3892/mmr.2023.12935. | 
| [29] | Shimizu H, Katsurahara K, Inoue H, et al. NADPH oxidase 2 has a crucial role in cell cycle progression of esophageal squamous cell carcinoma[J]. Ann Surg Oncol, 2022, 29(13): 8677-8687. DOI: 10.1245/s10434-022-12384-5. | 
| [30] |  
											 Hu Y, Ye X, Wang R,  et al. Current research progress in the role of reactive oxygen species in esophageal adenocarcinoma[J]. Transl Cancer Res, 2021, 10(3): 1568-1577. DOI: 10.21037/tcr-19-1985. 
																							 pmid: 35116481  | 
										
| [1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou. Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer [J]. Journal of International Oncology, 2024, 51(6): 321-325. | 
| [2] | Qian Xiaotao, Shi Ziyi, Hu Ge, Wu Xiaowei. Efficacy of consolidation chemotherapy after radical radiotherapy and chemotherapy for stage Ⅲ-ⅣA esophageal squamous cell carcinoma: a real-world clinical study [J]. Journal of International Oncology, 2024, 51(6): 326-331. | 
| [3] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. | 
| [4] | Yuan Jian, Huang Yanhua. Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer [J]. Journal of International Oncology, 2024, 51(6): 338-343. | 
| [5] | Chen Hongjian, Zhang Suqing. Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients [J]. Journal of International Oncology, 2024, 51(6): 344-349. | 
| [6] | Guo Zehao, Zhang Junwang. Role of PFDN and its subunits in tumorigenesis and tumor development [J]. Journal of International Oncology, 2024, 51(6): 350-353. | 
| [7] | Zhang Baihong, Yue Hongyun. Advances in anti-tumor drugs with new mechanisms of action [J]. Journal of International Oncology, 2024, 51(6): 354-358. | 
| [8] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. | 
| [9] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. | 
| [10] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. | 
| [11] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. | 
| [12] | Fan Zhipeng, Yu Jing, Hu Jing, Liao Zhengkai, Xu Yu, Ouyang Wen, Xie Conghua. Predictive value of changes in inflammatory markers for prognosis in patients with advanced non-small cell lung cancer treated with the first-line immunotherapy plus chemotherapy [J]. Journal of International Oncology, 2024, 51(5): 257-266. | 
| [13] | Liu Jing, Liu Qin, Huang Mei. Prognostic model construction of lung infection in patients with chemoradiotherapy for esophageal cancer based on SMOTE algorithm [J]. Journal of International Oncology, 2024, 51(5): 267-273. | 
| [14] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. | 
| [15] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||