
Journal of International Oncology ›› 2022, Vol. 49 ›› Issue (9): 546-549.doi: 10.3760/cma.j.cn371439-20220408-00106
• Reviews • Previous Articles Next Articles
					
													Zhang Ziyue1, Zheng Sihao1,2, Gao Yanjun1,2, Yao Yi1,2(
), Song Qibin1,2(
)
												  
						
						
						
					
				
Received:2022-04-08
															
							
																	Revised:2022-04-29
															
							
															
							
																	Online:2022-09-08
															
							
																	Published:2022-10-21
															
						Contact:
								Yao Yi,Song Qibin   
																	E-mail:yaoyi2018@whu.edu.cn;qibinsong@whu.edu.cn
																					Zhang Ziyue, Zheng Sihao, Gao Yanjun, Yao Yi, Song Qibin. CRISPR/Cas9 genome editing technology and its applications in tumor therapy[J]. Journal of International Oncology, 2022, 49(9): 546-549.
| [1] |  
											 Balon K, Sheriff A, Jacków J, et al. Targeting cancer with CRISPR/Cas9-based therapy[J]. Int J Mol Sci, 2022, 23(1): 573. DOI: 10.3390/ijms23010573. 
																							 doi: 10.3390/ijms23010573  | 
										
| [2] |  
											 Jiang C, Meng L, Yang B, et al. Application of CRISPR/Cas9 gene editing technique in the study of cancer treatment[J]. Clin Genet, 2020, 97(1): 73-88. DOI: 10.1111/cge.13589. 
																							 doi: 10.1111/cge.13589 pmid: 31231788  | 
										
| [3] |  
											 Gupta D, Bhattacharjee O, Mandal D, et al. CRISPR-Cas9 system: a new-fangled dawn in gene editing[J]. Life Sci, 2019, 232: 116636. DOI: 10.1016/j.lfs.2019.116636. 
																							 doi: 10.1016/j.lfs.2019.116636  | 
										
| [4] |  
											 Miller SM, Wang T, Randolph PB, et al. Continuous evolution of SpCas9 variants compatible with non-G PAMs[J]. Nat Biotechnol, 2020, 38(4): 471-481. DOI: 10.1038/s41587-020-0412-8. 
																							 doi: 10.1038/s41587-020-0412-8 pmid: 32042170  | 
										
| [5] |  
											 Walton RT, Christie KA, Whittaker MN, et al. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants[J]. Science, 2020, 368(6488): 290-296. DOI: 10.1126/science.aba8853. 
																							 doi: 10.1126/science.aba8853 pmid: 32217751  | 
										
| [6] |  
											 Leibowitz ML, Papathanasiou S, Doerfler PA, et al. Chromothripsis as an on-target consequence of CRISPR-Cas9 genome editing[J]. Nat Genet, 2021, 53(6): 895-905. DOI: 10.1038/s41588-021-00838-7. 
																							 doi: 10.1038/s41588-021-00838-7 pmid: 33846636  | 
										
| [7] |  
											 Haapaniemi E, Botla S, Persson J, et al. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response[J]. Nat Med, 2018, 24(7): 927-930. DOI: 10.1038/s41591-018-0049-z. 
																							 doi: 10.1038/s41591-018-0049-z pmid: 29892067  | 
										
| [8] |  
											 Dai X, Blancafort P, Wang P, et al. Innovative precision gene-editing tools in personalized cancer medicine[J]. Adv Sci (Weinh), 2020, 7(12): 1902552. DOI: 10.1002/advs.201902552. 
																							 doi: 10.1002/advs.201902552  | 
										
| [9] |  
											 Zhang X, Zhu B, Chen L, et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells[J]. Nat Biotechnol, 2020, 38(7): 856-860. DOI: 10.1038/s41587-020-0527-y. 
																							 doi: 10.1038/s41587-020-0527-y pmid: 32483363  | 
										
| [10] |  
											 Grünewald J, Zhou R, Lareau CA, et al. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing[J]. Nat Biotechnol, 2020, 38(7): 861-864. DOI: 10.1038/s41587-020-0535-y. 
																							 doi: 10.1038/s41587-020-0535-y pmid: 32483364  | 
										
| [11] |  
											 Xin H, Wan T, Ping Y. Off-targeting of base editors: BE3 but not ABE induces substantial off-target single nucleotide variants[J]. Signal Transduct Target Ther, 2019, 4: 9. DOI: 10.1038/s41392-019-0044-y. 
																							 doi: 10.1038/s41392-019-0044-y  | 
										
| [12] |  
											 Zuo E, Sun Y, Wei W, et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos[J]. Science, 2019, 364(6437): 289-292. DOI: 10.1126/science.aav9973. 
																							 doi: 10.1126/science.aav9973 pmid: 30819928  | 
										
| [13] |  
											 da Costa BL, Levi SR, Eulau E, et al. Prime editing for inherited retinal diseases[J]. Front Genome Ed, 2021, 3: 775330. DOI: 10.3389/fgeed.2021.775330. 
																							 doi: 10.3389/fgeed.2021.775330  | 
										
| [14] |  
											 Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019, 576(7785): 149-157. DOI: 10.1038/s41586-019-1711-4. 
																							 doi: 10.1038/s41586-019-1711-4  | 
										
| [15] |  
											 Kagoya Y, Guo T, Yeung B, et al. Genetic ablation of HLA class Ⅰ, class Ⅱ, and the t-cell receptor enables allogeneic T cells to be used for adoptive t-cell therapy[J]. Cancer Immunol Res, 2020, 8(7): 926-936. DOI: 10.1158/2326-6066.CIR-18-0508. 
																							 doi: 10.1158/2326-6066.CIR-18-0508 pmid: 32321775  | 
										
| [16] |  
											 Zhao Z, Li C, Tong F, et al. Review of applications of CRISPR-Cas9 gene-editing technology in cancer research[J]. Biol Proced Online, 2021, 23(1): 14. DOI: 10.1186/s12575-021-00151-x. 
																							 doi: 10.1186/s12575-021-00151-x  | 
										
| [17] |  
											 Gao Q, Dong X, Xu Q, et al. Therapeutic potential of CRISPR/Cas9 gene editing in engineered T-cell therapy[J]. Cancer Med, 2019, 8(9): 4254-4264. DOI: 10.1002/cam4.2257. 
																							 doi: 10.1002/cam4.2257  | 
										
| [18] |  
											 Choi BD, Yu X, Castano AP, et al. CRISPR-Cas9 disruption of PD-1 enhances activity of Universal EGFRvⅢ CAR T cells in a preclinical model of human glioblastoma[J]. J Immunother Cancer, 2019, 7(1): 304. DOI: 10.1186/s40425-019-0806-7. 
																							 doi: 10.1186/s40425-019-0806-7  | 
										
| [19] |  
											 Morimoto T, Nakazawa T, Matsuda R, et al. CRISPR-Cas9-mediated TIM3 knockout in human natural killer cells enhances growth inhibitory effects on human glioma cells[J]. Int J Mol Sci, 2021, 22(7): 3489. DOI: 10.3390/ijms22073489. 
																							 doi: 10.3390/ijms22073489  | 
										
| [20] |  
											 Jung IY, Kim YY, Yu HS, et al. CRISPR/Cas9-Mediated knockout of DGK improves antitumor activities of human T cells[J]. Cancer Res, 2018, 78(16): 4692-4703. DOI: 10.1158/0008-5472.CAN-18-0030. 
																							 doi: 10.1158/0008-5472.CAN-18-0030  | 
										
| [21] |  
											 Tang N, Cheng C, Zhang X, et al. TGF-β inhibition via CRISPR promotes the long-term efficacy of CAR T cells against solid tumors[J]. JCI Insight, 2020, 5(4): e133977. DOI: 10.1172/jci.insight.133977. 
																							 doi: 10.1172/jci.insight.133977  | 
										
| [22] |  
											 Wang Z, Li N, Feng K, et al. Phase Ⅰ study of CAR-T cells with PD-1 and TCR disruption in mesothelin-positive solid tumors[J]. Cell Mol Immunol, 2021, 18(9): 2188-2198. DOI: 10.1038/s41423-021-00749-x. 
																							 doi: 10.1038/s41423-021-00749-x  | 
										
| [23] |  
											 Webber BR, Lonetree CL, Kluesner MG, et al. Highly efficient multiplex human T cell engineering without double-strand breaks using Cas9 base editors[J]. Nat Commun, 2019, 10(1): 5222. DOI: 10.1038/s41467-019-13007-6. 
																							 doi: 10.1038/s41467-019-13007-6  | 
										
| [24] |  
											 Ou X, Ma Q, Yin W, et al. CRISPR/Cas9 gene-editing in cancer immunotherapy: promoting the present revolution in cancer therapy and exploring more[J]. Front Cell Dev Biol, 2021, 9: 674467. DOI: 10.3389/fcell.2021.674467. 
																							 doi: 10.3389/fcell.2021.674467  | 
										
| [25] |  
											 Morton LT, Reijmers RM, Wouters AK, et al. Simultaneous deletion of endogenous TCRαβ for TCR gene therapy creates an improved and safe cellular therapeutic[J]. Mol Ther, 2020, 28(1): 64-74. DOI: 10.1016/j.ymthe.2019.10.001. 
																							 doi: S1525-0016(19)30455-1 pmid: 31636040  | 
										
| [26] |  
											 Stadtmauer EA, Fraietta JA, Davis MM, et al. CRISPR-engineered T cells in patients with refractory cancer[J]. Science, 2020, 367(6481): eaba7365. DOI: 10.1126/science.aba7365. 
																							 doi: 10.1126/science.aba7365  | 
										
| [27] |  
											 Guo X, Jiang H, Shi B, et al. Disruption of PD-1 enhanced the anti-tumor activity of chimeric antigen receptor T cells against hepatocellular carcinoma[J]. Front Pharmacol, 2018, 9: 1118. DOI: 10.3389/fphar.2018.01118. 
																							 doi: 10.3389/fphar.2018.01118 pmid: 30327605  | 
										
| [28] |  
											 He XY, Ren XH, Peng Y, et al. Aptamer/peptide-functionalized genome-editing system for effective immune restoration through reversal of PD-L1-Mediated cancer immunosuppression[J]. Adv Mater, 2020, 32(17): e2000208. DOI: 10.1002/adma.202000208. 
																							 doi: 10.1002/adma.202000208  | 
										
| [29] |  
											 Lu Y, Xue J, Deng T, et al. Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer[J]. Nat Med, 2020, 26(5): 732-740. DOI: 10.1038/s41591-020-0840-5. 
																							 doi: 10.1038/s41591-020-0840-5 pmid: 32341578  | 
										
| [30] |  
											 Jubair L, Fallaha S, McMillan NAJ. Systemic delivery of CRISPR/Cas9 targeting HPV oncogenes is effective at eliminating established tumors[J]. Mol Ther, 2019, 27(12): 2091-2099. DOI: 10.1016/j.ymthe.2019.08.012. 
																							 doi: S1525-0016(19)30395-8 pmid: 31537455  | 
										
| [31] |  
											 Zhang H, Qin C, An C, et al. Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer[J]. Mol Cancer, 2021, 20(1): 126. DOI: 10.1186/s12943-021-01431-6. 
																							 doi: 10.1186/s12943-021-01431-6 pmid: 34598686  | 
										
| [32] |  
											 Xiong J, Tan S, Yu L, et al. E7-targeted nanotherapeutics for key HPV afflicted cervical lesions by employing CRISPR/Cas9 and poly (beta-amino ester)[J]. Int J Nanomedicine, 2021, 16: 7609-7622. DOI: 10.2147/IJN.S335277. 
																							 doi: 10.2147/IJN.S335277  | 
										
| [33] |  
											 Chen M, Mao A, Xu M, et al. CRISPR-Cas 9 for cancer therapy: opportunities and challenges[J]. Cancer Lett, 2019, 447: 48-55. DOI: 10.1016/j.canlet.2019.01.017. 
																							 doi: 10.1016/j.canlet.2019.01.017  | 
										
| [34] |  
											 Azangou-Khyavy M, Ghasemi M, Khanali J, et al. CRISPR/Cas: from tumor gene editing to T Cell-Based immunotherapy of cancer[J]. Front Immunol, 2020, 11: 2062. DOI: 10.3389/fimmu.2020.02062. 
																							 doi: 10.3389/fimmu.2020.02062 pmid: 33117331  | 
										
| [35] |  
											 Ebrahimi S, Makvandi M, Abbasi S, et al. Developing oncolytic Herpes simplex virus type 1 through UL39 knockout by CRISPR-Cas9[J]. Iran J Basic Med Sci, 2020, 23(7): 937-944. DOI: 10.22038/ijbms.2020.43864.10286. 
																							 doi: 10.22038/ijbms.2020.43864.10286 pmid: 32774817  | 
										
| [36] |  
											 Cai L, Hu H, Duan H, et al. The construction of a new oncolytic herpes simplex virus expressing murine interleukin-15 with gene-editing technology[J]. J Med Virol, 2020, 92(12): 3617-3627. DOI: 10.1002/jmv.25691. 
																							 doi: 10.1002/jmv.25691  | 
										
| [1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou. Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer [J]. Journal of International Oncology, 2024, 51(6): 321-325. | 
| [2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. | 
| [3] | Yuan Jian, Huang Yanhua. Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer [J]. Journal of International Oncology, 2024, 51(6): 338-343. | 
| [4] | Chen Hongjian, Zhang Suqing. Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients [J]. Journal of International Oncology, 2024, 51(6): 344-349. | 
| [5] | Guo Zehao, Zhang Junwang. Role of PFDN and its subunits in tumorigenesis and tumor development [J]. Journal of International Oncology, 2024, 51(6): 350-353. | 
| [6] | Zhang Baihong, Yue Hongyun. Advances in anti-tumor drugs with new mechanisms of action [J]. Journal of International Oncology, 2024, 51(6): 354-358. | 
| [7] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. | 
| [8] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. | 
| [9] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. | 
| [10] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. | 
| [11] | Fan Zhipeng, Yu Jing, Hu Jing, Liao Zhengkai, Xu Yu, Ouyang Wen, Xie Conghua. Predictive value of changes in inflammatory markers for prognosis in patients with advanced non-small cell lung cancer treated with the first-line immunotherapy plus chemotherapy [J]. Journal of International Oncology, 2024, 51(5): 257-266. | 
| [12] | Liu Jing, Liu Qin, Huang Mei. Prognostic model construction of lung infection in patients with chemoradiotherapy for esophageal cancer based on SMOTE algorithm [J]. Journal of International Oncology, 2024, 51(5): 267-273. | 
| [13] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. | 
| [14] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. | 
| [15] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi. Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer [J]. Journal of International Oncology, 2024, 51(5): 286-291. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||