Journal of International Oncology ›› 2022, Vol. 49 ›› Issue (9): 546-549.doi: 10.3760/cma.j.cn371439-20220408-00106
• Reviews • Previous Articles Next Articles
Zhang Ziyue1, Zheng Sihao1,2, Gao Yanjun1,2, Yao Yi1,2(), Song Qibin1,2()
Received:
2022-04-08
Revised:
2022-04-29
Online:
2022-09-08
Published:
2022-10-21
Contact:
Yao Yi,Song Qibin
E-mail:yaoyi2018@whu.edu.cn;qibinsong@whu.edu.cn
Zhang Ziyue, Zheng Sihao, Gao Yanjun, Yao Yi, Song Qibin. CRISPR/Cas9 genome editing technology and its applications in tumor therapy[J]. Journal of International Oncology, 2022, 49(9): 546-549.
[1] |
Balon K, Sheriff A, Jacków J, et al. Targeting cancer with CRISPR/Cas9-based therapy[J]. Int J Mol Sci, 2022, 23(1): 573. DOI: 10.3390/ijms23010573.
doi: 10.3390/ijms23010573 |
[2] |
Jiang C, Meng L, Yang B, et al. Application of CRISPR/Cas9 gene editing technique in the study of cancer treatment[J]. Clin Genet, 2020, 97(1): 73-88. DOI: 10.1111/cge.13589.
doi: 10.1111/cge.13589 pmid: 31231788 |
[3] |
Gupta D, Bhattacharjee O, Mandal D, et al. CRISPR-Cas9 system: a new-fangled dawn in gene editing[J]. Life Sci, 2019, 232: 116636. DOI: 10.1016/j.lfs.2019.116636.
doi: 10.1016/j.lfs.2019.116636 |
[4] |
Miller SM, Wang T, Randolph PB, et al. Continuous evolution of SpCas9 variants compatible with non-G PAMs[J]. Nat Biotechnol, 2020, 38(4): 471-481. DOI: 10.1038/s41587-020-0412-8.
doi: 10.1038/s41587-020-0412-8 pmid: 32042170 |
[5] |
Walton RT, Christie KA, Whittaker MN, et al. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants[J]. Science, 2020, 368(6488): 290-296. DOI: 10.1126/science.aba8853.
doi: 10.1126/science.aba8853 pmid: 32217751 |
[6] |
Leibowitz ML, Papathanasiou S, Doerfler PA, et al. Chromothripsis as an on-target consequence of CRISPR-Cas9 genome editing[J]. Nat Genet, 2021, 53(6): 895-905. DOI: 10.1038/s41588-021-00838-7.
doi: 10.1038/s41588-021-00838-7 pmid: 33846636 |
[7] |
Haapaniemi E, Botla S, Persson J, et al. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response[J]. Nat Med, 2018, 24(7): 927-930. DOI: 10.1038/s41591-018-0049-z.
doi: 10.1038/s41591-018-0049-z pmid: 29892067 |
[8] |
Dai X, Blancafort P, Wang P, et al. Innovative precision gene-editing tools in personalized cancer medicine[J]. Adv Sci (Weinh), 2020, 7(12): 1902552. DOI: 10.1002/advs.201902552.
doi: 10.1002/advs.201902552 |
[9] |
Zhang X, Zhu B, Chen L, et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells[J]. Nat Biotechnol, 2020, 38(7): 856-860. DOI: 10.1038/s41587-020-0527-y.
doi: 10.1038/s41587-020-0527-y pmid: 32483363 |
[10] |
Grünewald J, Zhou R, Lareau CA, et al. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing[J]. Nat Biotechnol, 2020, 38(7): 861-864. DOI: 10.1038/s41587-020-0535-y.
doi: 10.1038/s41587-020-0535-y pmid: 32483364 |
[11] |
Xin H, Wan T, Ping Y. Off-targeting of base editors: BE3 but not ABE induces substantial off-target single nucleotide variants[J]. Signal Transduct Target Ther, 2019, 4: 9. DOI: 10.1038/s41392-019-0044-y.
doi: 10.1038/s41392-019-0044-y |
[12] |
Zuo E, Sun Y, Wei W, et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos[J]. Science, 2019, 364(6437): 289-292. DOI: 10.1126/science.aav9973.
doi: 10.1126/science.aav9973 pmid: 30819928 |
[13] |
da Costa BL, Levi SR, Eulau E, et al. Prime editing for inherited retinal diseases[J]. Front Genome Ed, 2021, 3: 775330. DOI: 10.3389/fgeed.2021.775330.
doi: 10.3389/fgeed.2021.775330 |
[14] |
Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019, 576(7785): 149-157. DOI: 10.1038/s41586-019-1711-4.
doi: 10.1038/s41586-019-1711-4 |
[15] |
Kagoya Y, Guo T, Yeung B, et al. Genetic ablation of HLA class Ⅰ, class Ⅱ, and the t-cell receptor enables allogeneic T cells to be used for adoptive t-cell therapy[J]. Cancer Immunol Res, 2020, 8(7): 926-936. DOI: 10.1158/2326-6066.CIR-18-0508.
doi: 10.1158/2326-6066.CIR-18-0508 pmid: 32321775 |
[16] |
Zhao Z, Li C, Tong F, et al. Review of applications of CRISPR-Cas9 gene-editing technology in cancer research[J]. Biol Proced Online, 2021, 23(1): 14. DOI: 10.1186/s12575-021-00151-x.
doi: 10.1186/s12575-021-00151-x |
[17] |
Gao Q, Dong X, Xu Q, et al. Therapeutic potential of CRISPR/Cas9 gene editing in engineered T-cell therapy[J]. Cancer Med, 2019, 8(9): 4254-4264. DOI: 10.1002/cam4.2257.
doi: 10.1002/cam4.2257 |
[18] |
Choi BD, Yu X, Castano AP, et al. CRISPR-Cas9 disruption of PD-1 enhances activity of Universal EGFRvⅢ CAR T cells in a preclinical model of human glioblastoma[J]. J Immunother Cancer, 2019, 7(1): 304. DOI: 10.1186/s40425-019-0806-7.
doi: 10.1186/s40425-019-0806-7 |
[19] |
Morimoto T, Nakazawa T, Matsuda R, et al. CRISPR-Cas9-mediated TIM3 knockout in human natural killer cells enhances growth inhibitory effects on human glioma cells[J]. Int J Mol Sci, 2021, 22(7): 3489. DOI: 10.3390/ijms22073489.
doi: 10.3390/ijms22073489 |
[20] |
Jung IY, Kim YY, Yu HS, et al. CRISPR/Cas9-Mediated knockout of DGK improves antitumor activities of human T cells[J]. Cancer Res, 2018, 78(16): 4692-4703. DOI: 10.1158/0008-5472.CAN-18-0030.
doi: 10.1158/0008-5472.CAN-18-0030 |
[21] |
Tang N, Cheng C, Zhang X, et al. TGF-β inhibition via CRISPR promotes the long-term efficacy of CAR T cells against solid tumors[J]. JCI Insight, 2020, 5(4): e133977. DOI: 10.1172/jci.insight.133977.
doi: 10.1172/jci.insight.133977 |
[22] |
Wang Z, Li N, Feng K, et al. Phase Ⅰ study of CAR-T cells with PD-1 and TCR disruption in mesothelin-positive solid tumors[J]. Cell Mol Immunol, 2021, 18(9): 2188-2198. DOI: 10.1038/s41423-021-00749-x.
doi: 10.1038/s41423-021-00749-x |
[23] |
Webber BR, Lonetree CL, Kluesner MG, et al. Highly efficient multiplex human T cell engineering without double-strand breaks using Cas9 base editors[J]. Nat Commun, 2019, 10(1): 5222. DOI: 10.1038/s41467-019-13007-6.
doi: 10.1038/s41467-019-13007-6 |
[24] |
Ou X, Ma Q, Yin W, et al. CRISPR/Cas9 gene-editing in cancer immunotherapy: promoting the present revolution in cancer therapy and exploring more[J]. Front Cell Dev Biol, 2021, 9: 674467. DOI: 10.3389/fcell.2021.674467.
doi: 10.3389/fcell.2021.674467 |
[25] |
Morton LT, Reijmers RM, Wouters AK, et al. Simultaneous deletion of endogenous TCRαβ for TCR gene therapy creates an improved and safe cellular therapeutic[J]. Mol Ther, 2020, 28(1): 64-74. DOI: 10.1016/j.ymthe.2019.10.001.
doi: S1525-0016(19)30455-1 pmid: 31636040 |
[26] |
Stadtmauer EA, Fraietta JA, Davis MM, et al. CRISPR-engineered T cells in patients with refractory cancer[J]. Science, 2020, 367(6481): eaba7365. DOI: 10.1126/science.aba7365.
doi: 10.1126/science.aba7365 |
[27] |
Guo X, Jiang H, Shi B, et al. Disruption of PD-1 enhanced the anti-tumor activity of chimeric antigen receptor T cells against hepatocellular carcinoma[J]. Front Pharmacol, 2018, 9: 1118. DOI: 10.3389/fphar.2018.01118.
doi: 10.3389/fphar.2018.01118 pmid: 30327605 |
[28] |
He XY, Ren XH, Peng Y, et al. Aptamer/peptide-functionalized genome-editing system for effective immune restoration through reversal of PD-L1-Mediated cancer immunosuppression[J]. Adv Mater, 2020, 32(17): e2000208. DOI: 10.1002/adma.202000208.
doi: 10.1002/adma.202000208 |
[29] |
Lu Y, Xue J, Deng T, et al. Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer[J]. Nat Med, 2020, 26(5): 732-740. DOI: 10.1038/s41591-020-0840-5.
doi: 10.1038/s41591-020-0840-5 pmid: 32341578 |
[30] |
Jubair L, Fallaha S, McMillan NAJ. Systemic delivery of CRISPR/Cas9 targeting HPV oncogenes is effective at eliminating established tumors[J]. Mol Ther, 2019, 27(12): 2091-2099. DOI: 10.1016/j.ymthe.2019.08.012.
doi: S1525-0016(19)30395-8 pmid: 31537455 |
[31] |
Zhang H, Qin C, An C, et al. Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer[J]. Mol Cancer, 2021, 20(1): 126. DOI: 10.1186/s12943-021-01431-6.
doi: 10.1186/s12943-021-01431-6 pmid: 34598686 |
[32] |
Xiong J, Tan S, Yu L, et al. E7-targeted nanotherapeutics for key HPV afflicted cervical lesions by employing CRISPR/Cas9 and poly (beta-amino ester)[J]. Int J Nanomedicine, 2021, 16: 7609-7622. DOI: 10.2147/IJN.S335277.
doi: 10.2147/IJN.S335277 |
[33] |
Chen M, Mao A, Xu M, et al. CRISPR-Cas 9 for cancer therapy: opportunities and challenges[J]. Cancer Lett, 2019, 447: 48-55. DOI: 10.1016/j.canlet.2019.01.017.
doi: 10.1016/j.canlet.2019.01.017 |
[34] |
Azangou-Khyavy M, Ghasemi M, Khanali J, et al. CRISPR/Cas: from tumor gene editing to T Cell-Based immunotherapy of cancer[J]. Front Immunol, 2020, 11: 2062. DOI: 10.3389/fimmu.2020.02062.
doi: 10.3389/fimmu.2020.02062 pmid: 33117331 |
[35] |
Ebrahimi S, Makvandi M, Abbasi S, et al. Developing oncolytic Herpes simplex virus type 1 through UL39 knockout by CRISPR-Cas9[J]. Iran J Basic Med Sci, 2020, 23(7): 937-944. DOI: 10.22038/ijbms.2020.43864.10286.
doi: 10.22038/ijbms.2020.43864.10286 pmid: 32774817 |
[36] |
Cai L, Hu H, Duan H, et al. The construction of a new oncolytic herpes simplex virus expressing murine interleukin-15 with gene-editing technology[J]. J Med Virol, 2020, 92(12): 3617-3627. DOI: 10.1002/jmv.25691.
doi: 10.1002/jmv.25691 |
[1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou. Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer [J]. Journal of International Oncology, 2024, 51(6): 321-325. |
[2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[3] | Yuan Jian, Huang Yanhua. Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer [J]. Journal of International Oncology, 2024, 51(6): 338-343. |
[4] | Chen Hongjian, Zhang Suqing. Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients [J]. Journal of International Oncology, 2024, 51(6): 344-349. |
[5] | Guo Zehao, Zhang Junwang. Role of PFDN and its subunits in tumorigenesis and tumor development [J]. Journal of International Oncology, 2024, 51(6): 350-353. |
[6] | Zhang Baihong, Yue Hongyun. Advances in anti-tumor drugs with new mechanisms of action [J]. Journal of International Oncology, 2024, 51(6): 354-358. |
[7] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[8] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[9] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[10] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[11] | Fan Zhipeng, Yu Jing, Hu Jing, Liao Zhengkai, Xu Yu, Ouyang Wen, Xie Conghua. Predictive value of changes in inflammatory markers for prognosis in patients with advanced non-small cell lung cancer treated with the first-line immunotherapy plus chemotherapy [J]. Journal of International Oncology, 2024, 51(5): 257-266. |
[12] | Liu Jing, Liu Qin, Huang Mei. Prognostic model construction of lung infection in patients with chemoradiotherapy for esophageal cancer based on SMOTE algorithm [J]. Journal of International Oncology, 2024, 51(5): 267-273. |
[13] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. |
[14] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. |
[15] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi. Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer [J]. Journal of International Oncology, 2024, 51(5): 286-291. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||