Journal of International Oncology ›› 2022, Vol. 49 ›› Issue (2): 121-124.doi: 10.3760/cma.j.cn371439-20210202-00020
• Reviews • Previous Articles Next Articles
He Xiaokang1, Tu Xian2, Yao Fei2, Wu Qingming1,2()
Received:
2021-02-02
Revised:
2021-06-03
Online:
2022-02-08
Published:
2022-03-11
Contact:
Wu Qingming
E-mail:wuhe9224@sina.com
Supported by:
He Xiaokang, Tu Xian, Yao Fei, Wu Qingming. Research progress of Fusobacterium nucleatum and occurrence and development of colorectal cancer[J]. Journal of International Oncology, 2022, 49(2): 121-124.
[1] |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(1): 7-30. DOI: 10.3322/caac.21590.
doi: 10.3322/caac.21590 |
[2] |
Hashemi Goradel N, Heidarzadeh S, Jahangiri S, et al. Fusobacte-rium nucleatum and colorectal cancer: a mechanistic overview[J]. J Cell Physiol, 2019, 234(3): 2337-2344. DOI: 10.1002/jcp.27250.
doi: 10.1002/jcp.27250 pmid: 30191984 |
[3] |
Mima K, Nishihara R, Qian ZR, et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis[J]. Gut, 2016, 65(12): 1973-1980. DOI: 10.1136/gutjnl-2015-310101.
doi: 10.1136/gutjnl-2015-310101 |
[4] |
Tunsjø HS, Gundersen G, Rangnes F, et al. Detection of Fusobacterium nucleatum in stool and colonic tissues from Norwegian colorectal cancer patients[J]. Eur J Clin Microbiol Infect Dis, 2019, 38(7): 1367-1376. DOI: 10.1007/s10096-019-03562-7.
doi: 10.1007/s10096-019-03562-7 |
[5] | Signat B, Roques C, Poulet P, et al. Fusobacterium nucleatum in periodontal health and disease[J]. Curr Issues Mol Biol, 2011, 13(2): 25-36. |
[6] |
Allen-Vercoe E, Strauss J, Chadee K. Fusobacterium nucleatum: an emerging gut pathogen?[J]. Gut Microbes, 2011, 2(5): 294-298. DOI: 10.4161/gmic.2.5.18603.
doi: 10.4161/gmic.2.5.18603 pmid: 22067936 |
[7] |
Castellarin M, Warren RL, Freeman JD, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma[J]. Genome Res, 2012, 22(2): 299-306. DOI: 10.1101/gr.126516.111.
doi: 10.1101/gr.126516.111 pmid: 22009989 |
[8] |
Warren RL, Freeman DJ, Pleasance S, et al. Co-occurrence of anaerobic bacteria in colorectal carcinomas[J]. Microbiome, 2013, 1(1): 16. DOI: 10.1186/2049-2618-1-16.
doi: 10.1186/2049-2618-1-16 pmid: 24450771 |
[9] |
Weng YJ, Gan HY, Li X, et al. Correlation of diet, microbiota and metabolite networks in inflammatory bowel disease[J]. J Dig Dis, 2019, 20(9): 447-459. DOI: 10.1111/1751-2980.12795.
doi: 10.1111/1751-2980.12795 |
[10] |
Rubinstein MR, Wang X, Liu W, et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin[J]. Cell Host Microbe, 2013, 14(2): 195-206. DOI: 10.1016/j.chom.2013.07.012.
doi: 10.1016/j.chom.2013.07.012 pmid: 23954158 |
[11] |
Brennan CA, Garrett WS. Gut microbiota, inflammation, and colo-rectal cancer[J]. Annu Rev Microbiol, 2016, 70:395-411. DOI: 10.1146/annurev-micro-102215-095513.
doi: 10.1146/annurev-micro-102215-095513 |
[12] |
Proença MA, Biselli JM, Succi M, et al. Relationship between Fusobacterium nucleatum, inflammatory mediators and microRNAs in colorectal carcinogenesis[J]. World J Gastroenterol, 2018, 24(47): 5351-5365. DOI: 10.3748/wjg.v24.i47.5351.
doi: 10.3748/wjg.v24.i47.5351 |
[13] |
Jia YP, Wang K, Zhang ZJ, et al. TLR2/TLR4 activation induces Tregs and suppresses intestinal inflammation caused by Fusobacte-rium nucleatum in vivo[J]. PLoS One, 2017, 12(10): e0186179. DOI: 10.1371/journal.pone.0186179.
doi: 10.1371/journal.pone.0186179 |
[14] |
Wang Q, Zhao L, Xu C, et al. Fusobacterium nucleatum stimulates monocyte adhesion to and transmigration through endothelial cells[J]. Arch Oral Biol, 2019, 100:86-92. DOI: 10.1016/j.archoralbio.2019.02.013.
doi: 10.1016/j.archoralbio.2019.02.013 |
[15] |
Tang B, Wang K, Jia YP, et al. Fusobacterium nucleatum-induced impairment of autophagic flux enhances the expression of proinflammatory cytokines via ROS in Caco-2 cells[J]. PLoS One, 2016, 11(11): e0165701. DOI: 10.1371/journal.pone.0165701.
doi: 10.1371/journal.pone.0165701 |
[16] |
Wu J, Li Q, Fu X. Fusobacterium nucleatum contributes to the carcinogenesis of colorectal cancer by inducing inflammation and suppressing host immunity[J]. Transl Oncol, 2019, 12(6): 846-851. DOI: 10.1016/j.tranon.2019.03.003.
doi: 10.1016/j.tranon.2019.03.003 |
[17] |
Bashir A, Miskeen AY, Hazari YM, et al. Fusobacterium nucleatum, inflammation, and immunity: the fire within human gut[J]. Tumour Biol, 2016, 37(3): 2805-2810. DOI: 10.1007/s13277-015-4724-0.
doi: 10.1007/s13277-015-4724-0 |
[18] |
Gur C, Ibrahim Y, Isaacson B, et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack[J]. Immunity, 2015, 42(2): 344-355. DOI: 10.1016/j.immuni.2015.01.010.
doi: 10.1016/j.immuni.2015.01.010 |
[19] |
Ye X, Wang R, Bhattacharya R, et al. Fusobacterium nucleatum subspecies animalis influences proinflammatory cytokine expression and monocyte activation in human colorectal tumors[J]. Cancer Prev Res (Phila), 2017, 10(7): 398-409. DOI: 10.1158/1940-6207.CAPR-16-0178.
doi: 10.1158/1940-6207.CAPR-16-0178 |
[20] |
Keku TO, McCoy AN, Azcarate-Peril AM. Fusobacterium spp. and colorectal cancer: cause or consequence?[J]. Trends Microbiol, 2013, 21(10): 506-508. DOI: 10.1016/j.tim.2013.08.004.
doi: 10.1016/j.tim.2013.08.004 |
[21] |
Edin S, Wikberg ML, Dahlin AM, et al. The distribution of macrophages with a M1 or M2 phenotype in relation to prognosis and the molecular characteristics of colorectal cancer[J]. PLoS One, 2012, 7(10): e47045. DOI: 10.1371/journal.pone.0047045.
doi: 10.1371/journal.pone.0047045 |
[22] |
Edin S, Wikberg ML, Oldenborg PA, et al. Macrophages: good guys in colorectal cancer[J]. Oncoimmunology, 2013, 2(2): e23038. DOI: 10.4161/onci.23038.
doi: 10.4161/onci.23038 |
[23] |
Park HE, Kim JH, Cho NY, et al. Intratumoral Fusobacterium nucleatum abundance correlates with macrophage infiltration and CDKN2A methylation in microsatellite-unstable colorectal carcinoma[J]. Virchows Arch, 2017, 471(3): 329-336. DOI: 10.1007/s00428-017-2171-6.
doi: 10.1007/s00428-017-2171-6 |
[24] |
Yu T, Guo F, Yu Y, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy[J]. Cell, 2017, 170(3): 548-563.e16. DOI: 10.1016/j.cell.2017.07.008.
doi: 10.1016/j.cell.2017.07.008 |
[25] |
Zhang S, Yang Y, Weng W, et al. Fusobacterium nucleatum promotes chemoresistance to 5-fluorouracil by upregulation of BIRC3 expression in colorectal cancer[J]. J Exp Clin Cancer Res, 2019, 38(1): 14. DOI: 10.1186/s13046-018-0985-y.
doi: 10.1186/s13046-018-0985-y |
[26] |
Baldin V, Lukas J, Marcote MJ, et al. Cyclin D1 is a nuclear protein required for cell cycle progression in G1[J]. Genes Dev, 1993, 7(5): 812-821. DOI: 10.1101/gad.7.5.812.
doi: 10.1101/gad.7.5.812 |
[27] |
Chen Y, Peng Y, Yu J, et al. Invasive Fusobacterium nucleatum activates beta-catenin signaling in colorectal cancer via a TLR4/P-PAK1 cascade[J]. Oncotarget, 2017, 8(19): 31802-31814. DOI: 10.18632/oncotarget.15992.
doi: 10.18632/oncotarget.15992 |
[28] |
Hur K, Toiyama Y, Okugawa Y, et al. Circulating microRNA-203 predicts prognosis and metastasis in human colorectal cancer[J]. Gut, 2017, 66(4): 654-665. DOI: 10.1136/gutjnl-2014-308737.
doi: 10.1136/gutjnl-2014-308737 |
[29] |
Yang Y, Weng W, Peng J, et al. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor-κB, and up-regulating expression of microRNA-21[J]. Gastroenterology, 2017, 152(4): 851-866.e24. DOI: 10.1053/j.gastro.2016.11.018.
doi: 10.1053/j.gastro.2016.11.018 |
[30] |
Hong J, Guo F, Lu SY, et al. F. nucleatum targets lncRNA ENO1-IT1 to promote glycolysis and oncogenesis in colorectal cancer[J]. Gut, 2021, 70(11): 2123-2137. DOI: 10.1136/gutjnl-2020-322780.
doi: 10.1136/gutjnl-2020-322780 pmid: 33318144 |
[31] |
Bullman S, Pedamallu CS, Sicinska E, et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer[J]. Science, 2017, 358(6369): 1443-1448. DOI: 10.1126/science.aal5240.
doi: 10.1126/science.aal5240 pmid: 29170280 |
[32] |
Rubinstein MR, Baik JE, Lagana SM, et al. Fusobacterium nucleatum promotes colorectal cancer by inducing Wnt/β-catenin modulator Annexin A1[J]. EMBO Rep, 2019, 20(4): e47638. DOI: 10.15252/embr.201847638.
doi: 10.15252/embr.201847638 |
[1] | Qian Xiaotao, Shi Ziyi, Hu Ge, Wu Xiaowei. Efficacy of consolidation chemotherapy after radical radiotherapy and chemotherapy for stage Ⅲ-ⅣA esophageal squamous cell carcinoma: a real-world clinical study [J]. Journal of International Oncology, 2024, 51(6): 326-331. |
[2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[3] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[4] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[5] | Fan Zhipeng, Yu Jing, Hu Jing, Liao Zhengkai, Xu Yu, Ouyang Wen, Xie Conghua. Predictive value of changes in inflammatory markers for prognosis in patients with advanced non-small cell lung cancer treated with the first-line immunotherapy plus chemotherapy [J]. Journal of International Oncology, 2024, 51(5): 257-266. |
[6] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. |
[7] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. |
[8] | Liu Pingping, He Xuefang, Zhang Yi, Yang Xu, Zhang Shanshan, Ji Yifei. Risk factors of postoperative recurrence in patients with primary brain glioma and prediction model construction [J]. Journal of International Oncology, 2024, 51(4): 193-197. |
[9] | Wan Fang, Yang Gang, Li Rui, Wan Qijing. Expression levels and clinical significance of serum miR-497 and miR-383 in patients with esophageal cancer [J]. Journal of International Oncology, 2024, 51(4): 204-209. |
[10] | Yao Yixin, Shen Yulin. Predictive value of serum SOCS3 and TXNIP levels for the prognosis of patients with hepatocellular carcinoma treated with TACE [J]. Journal of International Oncology, 2024, 51(4): 217-222. |
[11] | Sun Weiwei, Yao Xuemin, Wang Pengjian, Wang Jing, Jia Jinghao. Exploration of prognostic factors and nomogram construction for advanced non-small cell lung cancer treated with immunotherapy based on hematologic indexes [J]. Journal of International Oncology, 2024, 51(3): 143-150. |
[12] | Liu Yulan, Jing Haiyan, Sun Jing, Song Wei, Sha Dan. Advances in predicting efficacy and prognostic markers of immunotherapy for gastric cancer [J]. Journal of International Oncology, 2024, 51(3): 175-180. |
[13] | Peng Qin, Cai Yuting, Wang Wei. Advances on KPNA2 in liver cancer [J]. Journal of International Oncology, 2024, 51(3): 181-185. |
[14] | Sun Guobao, Yang Qian, Zhuang Qingchun, Gao Binbin, Sun Xiaogang, Song Wei, Sha Dan. Research progress on the histopathological growth patterns of colorectal liver metastasis [J]. Journal of International Oncology, 2024, 51(2): 114-118. |
[15] | Chen Boguang, Wang Sugui, Zhang Yongjie. Role of serum cholinesterase and inflammatory markers in the prognosis of stage ⅠA -ⅢA breast cancer [J]. Journal of International Oncology, 2024, 51(2): 73-82. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||