Journal of International Oncology ›› 2021, Vol. 48 ›› Issue (4): 235-240.doi: 10.3760/cma.j.cn371439-20200911-00047
• Reviews • Previous Articles Next Articles
Yang Chenguang1,2, Xu Zhiqiao2()
Received:
2020-09-11
Revised:
2020-12-22
Online:
2021-04-08
Published:
2021-06-18
Contact:
Xu Zhiqiao
E-mail:esc7312@163.com
Yang Chenguang, Xu Zhiqiao. Targeted therapy for advanced non-small cell lung cancer with driver gene-positive[J]. Journal of International Oncology, 2021, 48(4): 235-240.
[1] | Barta JA, Powell CA, Wisnivesky JP. Global epidemiology of lung cancer[J]. Ann Glob Health, 2019, 85(1):8. DOI: 10.5334/aogh.2419. |
[2] |
Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer[J]. Nature, 2018, 553(7689):446-454. DOI: 10.1038/nature25183.
doi: 10.1038/nature25183 pmid: 29364287 |
[3] |
Kris MG, Johnson BE, Berry LD, et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs[J]. JAMA, 2014, 311(19):1998-2006. DOI: 10.1001/jama.2014.3741.
doi: 10.1001/jama.2014.3741 |
[4] |
Ettinger DS, Wood DE, Aggarwal C, et al. NCCN guidelines insights: non-small cell lung cancer, version 1.2020[J]. J Natl Compr Canc Netw, 2019, 17(12):1464-1472. DOI: 10.6004/jnccn.2019.0059.
doi: 10.6004/jnccn.2019.0059 pmid: 31805526 |
[5] |
Yamaoka T, Kusumoto S, Ando K, et al. Receptor tyrosine kinase-targeted cancer therapy[J]. Int J Mol Sci, 2018, 19(11):3491. DOI: 10.3390/ijms19113491.
doi: 10.3390/ijms19113491 |
[6] | Wang J, Wang B, Chu H, et al. Intrinsic resistance to EGFR tyrosine kinase inhibitors in advanced non-small-cell lung cancer with activating EGFR mutations[J]. Onco Targets Ther, 2016, 9:3711-3726. DOI: 10.2147/OTT.S106399. |
[7] |
Wu YL, Saijo N, Thongprasert S, et al. Efficacy according to blind independent central review: post-hoc analyses from the phase Ⅲ, randomized, multicenter, IPASS study of first-line gefitinib versus carboplatin/paclitaxel in Asian patients with EGFR mutation-positive advanced NSCLC[J]. Lung Cancer, 2017, 104:119-125. DOI: 10.1016/j.lungcan.2016.11.022.
doi: 10.1016/j.lungcan.2016.11.022 |
[8] | Zhao Y, Liu J, Cai X, et al. Efficacy and safety of first line treatments for patients with advanced epidermal growth factor receptor mutated, non-small cell lung cancer: systematic review and network meta-analysis[J]. BMJ, 2019, 367:l5460. DOI: 10.1136/bmj.l5460. |
[9] |
Kelly RJ, Shepherd FA, Krivoshik A, et al. A phase Ⅲ, rando-mized, open-label study of ASP8273 versus erlotinib or gefitinib in patients with advanced stage ⅢB/Ⅳ non-small-cell lung cancer[J]. Ann Oncol, 2019, 30(7):1127-1133. DOI: 10.1093/annonc/mdz128.
doi: 10.1093/annonc/mdz128 |
[10] | 张钰, 周建国, 马虎. 非小细胞肺癌分子靶向治疗及其耐药[J]. 国际肿瘤学杂志, 2016, 43(1):45-48. DOI: 10.3760/cma.j.issn.1673-422X.2016.01.013. |
[11] |
Wu SG, Liu YN, Tsai MF, et al. The mechanism of acquired resis-tance to irreversible EGFR tyrosine kinase inhibitor-afatinib in lung adenocarcinoma patients[J]. Oncotarget, 2016, 7(11):12404-12413. DOI: 10.18632/oncotarget.7189.
doi: 10.18632/oncotarget.v7i11 |
[12] |
Park K, Tan EH, O'Byrne K, et al. Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): a phase 2B, open-label, randomised controlled trial[J]. Lancet Oncol, 2016, 17(5):577-589. DOI: 10.1016/S1470-2045(16)30033-X.
doi: 10.1016/S1470-2045(16)30033-X |
[13] | Wu YL, Cheng Y, Zhou XD, et al. Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation positive non-small-cell lung cancer (ARCHER1050): a randomised, open-label, phase 3 trial[J]. Lancent Oncol, 2017, 18(11):1454-1466. DOI: 10.1016/S1470-2045(17)30608-3. |
[14] |
Leonetti A, Sharma S, Minari R, et al. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer[J]. Br J Cancer, 2019, 121(9):725-737. DOI: 10.1038/s41416-019-0573-8.
doi: 10.1038/s41416-019-0573-8 |
[15] |
Jänne PA, Yang J CH, Kim DW, et al. AZD9291 in EGFR inhi-bitor resistance non-small-cell lung cancer[J]. N Eng J Med, 2015, 372(18):1689-1699. DOI: 10.1056/NEJMoa1411817.
doi: 10.1056/NEJMoa1411817 |
[16] |
Yang JC, Ahn MJ, Kim DW, et al. Osimertinib in pretreated T790M positive advanced non-small-cell lung cancer: AURA study phase Ⅱ extension component[J]. J Clin Oncol, 2017, 35(12):1288-1296. DOI: 10.1200/JCO.2016.70.3223.
doi: 10.1200/JCO.2016.70.3223 |
[17] |
Gourd E. Overall survival with osimertinib in untreated NSCLC[J]. Lancet Oncol, 2020, 21(1): e15. DOI: 10.1016/S1470-2045(19)30778-8.
doi: 10.1016/S1470-2045(19)30778-8 |
[18] |
Soria JC, Ohe Y, Vansteenkiste J, et al. Osimertinib in untreated EGFR mutated advanced non-small-cell lung cancer[J]. N Engl J Med, 2018, 378(2):113-125. DOI: 10.1056/NEJMoa1713137.
doi: 10.1056/NEJMoa1713137 |
[19] | Cho JH, Lim SH, An HJ, et al. Osimertinib for patients with non-small-cell lung cancer harboring uncommom EGFR mutations: a multicencet, open-label, phase Ⅱ trial (KCSG-LU15-09)[J]. J Clin Oncol, 2020, 38(5):488-495. DOI: 10.1200/JCO.19.00931. |
[20] |
Ramalingam SS, Yang JC, Lee CK, et al. Osimertinib as first-line treatment of EGFR mutation-positive advanced non-small-cell lung cancer[J]. J Clin Oncol, 2018, 36(9):841-849. DOI: 10.1200/JCO.2017.74.7576.
doi: 10.1200/JCO.2017.74.7576 |
[21] |
Kannan S, Venkatachalam G, Lim HH, et al. Conformational landscape of the epidermal growth factor receptor kinase reveals a mutant specific allosteric pocket[J]. Chem Sci, 2018, 9(23):5212-5222. DOI: 10.1039/c8sc01262h.
doi: 10.1039/C8SC01262H |
[22] |
Jia Y, Yun CH, Park E, et al. Overcoming EGFR (T790M) and EGFR (C797S) resistance with mutant selective allosteric inhibitors[J]. Nature, 2016, 534(7605):129-132. DOI: 10.1038/nature17960.
doi: 10.1038/nature17960 |
[23] |
Gridelli C, Peters S, Sgambato A, et al. ALK inhibitors in the treatment of advanced NSCLC[J]. Cancer Treat Rev, 2014, 40(2):300-306. DOI: 10.1016/j.ctrv.2013.07.002.
doi: 10.1016/j.ctrv.2013.07.002 |
[24] |
Nishio M, Kim DW, Wu YL, et al. Crizotinib versus chemotherapy in Asian patients with advanced ALK-positive non-small cell lung cancer[J]. Cancer Res Treat, 2018, 50(3):691-700. DOI: 10.4143/crt.2017.280.
doi: 10.4143/crt.2017.280 |
[25] |
Wu YL, Lu S, Lu Y, et al. Results of PROFILE 1029, a phase Ⅲ comparison of first-line crizotinib versus chemotherapy in east Asian patients with ALK-positive advanced non-small cell lung cancer[J]. J Thorac Oncol, 2018, 13(10):1539-1548. DOI: 10.1016/j.jtho.2018.06.012.
doi: 10.1016/j.jtho.2018.06.012 |
[26] |
Peters S, Camidge DR, Shaw AT, et al. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer[J]. N Engl J Med, 2017, 377(9):829-838. DOI: 10.1056/NEJMoa1704795.
doi: 10.1056/NEJMoa1704795 |
[27] |
Zhou C, Kim SW, Reungwetwattana T, et al. Alectinib versus crizotinib in untreated Asian patients with anaplastic lymphoma kinase-positive non-small-cell lung cancer (ALESIA): a randomised phase 3 study[J]. Lancet Respir Med, 2019, 7(5):437-446. DOI: 10.1016/S2213-2600(19)30053-0.
doi: 10.1016/S2213-2600(19)30053-0 |
[28] |
Mok T, Camidge DR, Gadgeel SM, et al. Updated overall survival and final progression-free survival data for patients with treatment-naive advanced ALK-positive non-small-cell lung cancer in the ALEX study[J]. Ann Oncol, 2020, 31(8):1056-1064. DOI: 10.1016/j.annonc.2020.04.478.
doi: 10.1016/j.annonc.2020.04.478 |
[29] |
Camidge DR, Kim HR, Ahn MJ, et al. Brigatinib versus crizotinib in alk-positive non-small-cell lung cancer[J]. N Engl J Med, 2018, 379(21):2027-2039. DOI: 10.1056/NEJMoa1810171.
doi: 10.1056/NEJMoa1810171 |
[30] |
Soria JC, Tan DSW, Chiari R, et al. First-line ceritinib versus platinum-based chemotherapy in advanced ALK-rearranged non-small-cell lung cancer (ASCEND-4): a randomised, open-label, phase 3 study[J]. Lancet, 2017, 389(10072):917-929. DOI: 10.1016/S0140-6736(17)30123-X.
doi: 10.1016/S0140-6736(17)30123-X |
[31] |
Zou HY, Friboulet L, Kodack DP, et al. PF-06463922, an ALK/ROS1 inhibitor, overcomes resistance to first and second generation ALK inhibitors in preclinical models[J]. Cancer Cell, 2015, 28(1):70-81. DOI: 10.1016/j.ccell.2015.05.010.
doi: 10.1016/j.ccell.2015.05.010 |
[32] |
Shaw AT, Felip E, Bauer TM, et al. Lorlatinib in non-small-cell lung cancer with ALK or ROS1 rearrangement: an international, multicentre, open-label, single-arm first-in-man phase 1 trial[J]. Lancet Oncol, 2017, 18(12):1590-1599. DOI: 10.1016/S1470-2045(17)30680-0.
doi: 10.1016/S1470-2045(17)30680-0 |
[33] |
Schrank Z, Chhabra G, Lin L, et al. Current molecular-targeted therapies in NSCLC and their mechanism of resistance[J]. Cancers (Basel), 2018, 10(7):224. DOI: 10.3390/cancers10070224.
doi: 10.3390/cancers10070224 |
[34] |
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2):115-132. DOI: 10.3322/caac.21338.
doi: 10.3322/caac.21338 |
[35] | 金瑶, 翁一鸣, 胥泽玺, 等. ROS1阳性非小细胞肺癌靶向治疗的研究进展[J]. 国际肿瘤学杂志, 2019, 46(12):745-749. DOI: 10.3760/cma.j.issn.1673-422X.2019.12.008. |
[36] |
Shaw AT, Ou SH, Bang YJ, et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer[J]. N Engl J Med, 2014, 371(21):1963-1971. DOI: 10.1056/NEJMoa1406766.
doi: 10.1056/NEJMoa1406766 |
[37] |
Shaw AT, Riely GJ, Bang YJ, et al. Crizotinib in ROS1-rearranged advanced non-small-cell lung cancer (NSCLC): updated results, including overall survival, from PROFILE 1001[J]. Ann Oncol, 2019, 30(7):1121-1126. DOI: 10.1093/annonc/mdz131.
doi: 10.1093/annonc/mdz131 |
[38] |
Wu YL, Yang JC, Kim DW, et al. Phase Ⅱ study of crizotinib in east Asian patients with ROS1-positive advanced non-small-cell lung cancer[J]. J Clin Oncol, 2018, 36(14):1405-1411. DOI: 10.1200/JCO.2017.75.5587.
doi: 10.1200/JCO.2017.75.5587 |
[39] |
Juan O, Popat S. Crizotinib for ROS1 patients: one small step in biomarker testing, one giant leap for advanced NSCLC patients[J]. Lung Cancer, 2017, 104:131-133. DOI: 10.1016/j.lungcan.2016.11.007.
doi: 10.1016/j.lungcan.2016.11.007 |
[40] |
Lim SM, Kim HR, Lee JS, et al. Open-label, multicenter, phase Ⅱ study of ceritinib in patients with non-small-cell lung cancer harboring ROS1 rearrangement[J]. J Clin Oncol, 2017, 35(23):2613-2618. DOI: 10.1200/JCO.2016.71.3701.
doi: 10.1200/JCO.2016.71.3701 |
[41] |
Davare MA, Vellore NA, Wagner JP, et al. Structural insight into selectivity and resistance profiles of ROS1 tyrosine kinase inhibitors[J]. Proc Natl Acad Sci U S A, 2015, 112(39): E5381-E5390. DOI: 10.1073/pnas.1515281112.
doi: 10.1073/pnas.1515281112 |
[42] |
Shaw AT, Solomon BJ, Chiari R, et al. Lorlatinib in advanced ROS1 positive non-small-cell lung cancer: a multicentre, open-label, single-arm, phase 1-2 trial[J]. Lancet Oncol, 2019, 20(12):1691-1701. DOI: 10.1016/S1470-2045(19)30655-2.
doi: 10.1016/S1470-2045(19)30655-2 |
[43] |
Drilon A, Siena S, Dziadziuszko R, et al. Entrectinib in ROS1 fusion-positive non-small-cell lung cancer: integrated analysis of three phase 1-2 trials[J]. Lancet Oncol, 2020, 21(2):261-270. DOI: 10.1016/S1470-2045(19)30690-4.
doi: 10.1016/S1470-2045(19)30690-4 |
[1] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[2] | Wang Peixin, Zhao Jun, Xu Shihong, Jiang Zhaoyang, Wang Xiaoqiang, Yang Hongjuan. Progress of ferroptosis-related mechanisms in osteosarcoma [J]. Journal of International Oncology, 2024, 51(5): 308-311. |
[3] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[4] | Huang Hui, Ding Jianghua. Advances in targeting FGFR2 for treatment of advanced cholangiocarcinoma [J]. Journal of International Oncology, 2023, 50(9): 569-573. |
[5] | Li Qingshan, Xie Xin, Zhang Nan, Liu Shuai. Research progress on the application of combining radiotherapy and systemic therapy in breast cancer [J]. Journal of International Oncology, 2023, 50(6): 362-367. |
[6] | Liu Li, Zhu Siqi, Sun Mengying, He Jingdong. Progress of PARP inhibitors in targeted therapy of small cell lung cancer [J]. Journal of International Oncology, 2023, 50(6): 368-372. |
[7] | Liu Bohan, Huang Junxing. Research progress of solute carriers related genes in malignant tumors [J]. Journal of International Oncology, 2023, 50(5): 280-284. |
[8] | Zhu Jun, Huang Meijin, Li Yuan, Liu Zegang, Xun Xin, Chen Hong. Research progress on targeted therapy of breast cancer with low expression of HER2 [J]. Journal of International Oncology, 2023, 50(4): 236-240. |
[9] | Deng Lili, Duan Xingyu, Li Baozhong. Advances of anti-HER2 targeted drugs and combined therapeutic regimens for gastric and esophagogastic adenocarcinoma [J]. Journal of International Oncology, 2023, 50(12): 751-757. |
[10] | Liu Shaoping, Luo Hanchuan, Lin Shuhan, Luo Jiahui. Current status and research progress of interventional and systemic therapy for advanced hepatocellular carcinoma [J]. Journal of International Oncology, 2023, 50(12): 758-762. |
[11] | Jiang Shan, Xu Ximing. Recent progresses of targeted therapy and immunotherapy of hepatocellular carcinoma [J]. Journal of International Oncology, 2023, 50(11): 688-695. |
[12] | Jiang Shan, Xu Yangtao, Liu Xin, Chen Wenliang, Xu Ximing. Predictive value of baseline peripheral blood inflammatory biomarkers for prognosis in patients with advanced hepatocellular carcinoma treated with immunotherapy combined with targeted therapy [J]. Journal of International Oncology, 2023, 50(10): 600-607. |
[13] | Zhang Jingxian, Su Jianfei, Wei Xueqin, Yi Dan, Li Xiaojiang. Treatment status of non-small cell lung cancer with METexon14 skipping mutation [J]. Journal of International Oncology, 2023, 50(1): 37-41. |
[14] | Song Jia, Hu Qinyong. Application of TACE combined with molecular targeted therapy and immunotherapy in BCLC B/C hepatocellular carcinoma [J]. Journal of International Oncology, 2022, 49(9): 550-554. |
[15] | Zhang Jingxian, Yi Dan, Li Xiaojiang. Application of antibody-drug conjugates in the treatment of non-small cell lung cancer [J]. Journal of International Oncology, 2022, 49(5): 296-301. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||