[1] |
王锡山. 中美结直肠癌流行病学特征对比及防控策略分析[J]. 中华结直肠疾病电子杂志, 2019,8(1):1-5. DOI: 10.3877/cma.j.issn.2095-3224.2019.01.001.
|
[2] |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019[J]. CA Cancer J Clin, 2019,69(1):7-34. DOI: 10.3322/caac.21551.
doi: 10.3322/caac.21551
pmid: 30620402
|
[3] |
李心翔, 李清国. 局部进展期直肠癌行新辅助放化疗后辅助化疗的争议与进展[J]. 中华胃肠外科杂志, 2019,22(6):594-596. DOI: 3760/cma.j.issn.1671-0274.2019.06.015.
|
[4] |
Franke AJ, Parekh H, Starr JS, et al. Total neoadjuvant therapy: a shifting paradigm in locally advanced rectal cancer management[J]. Clin Colorectal Cancer, 2018,17(1):1-12. DOI: 10.1016/j.clcc.2017.06.008.
doi: 10.1016/j.clcc.2017.06.008
pmid: 28803718
|
[5] |
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012,48(4):441-446. DOI: 10.1016/j.ejca.2011.11.036.
doi: 10.1016/j.ejca.2011.11.036
|
[6] |
Liu Z, Zhang XY, Shi YJ, et al. Radiomics analysis for evaluation of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced Rectal cancer[J]. Clin Cancer Res, 2017,23(23):7253-7262. DOI: 10.1158/1078-0432.CCR-17-1038.
doi: 10.1158/1078-0432.CCR-17-1038
pmid: 28939744
|
[7] |
Li J, Li L, Yang L, et al. Wait-and-see treatment strategies for rectal cancer patients with clinical complete response after neoadjuvant chemoradiotherapy: a systematic review and meta-analysis[J]. Oncotarget, 2016,7(28):44857-44870. DOI: 10.18632/oncotarget.8622.
doi: 10.18632/oncotarget.8622
pmid: 27070085
|
[8] |
Kachnic LA, Glynne-Jones R. Accomplishments in 2007 in the adjuvant treatment of rectal cancer[J]. Gastrointest Cancer Res, 2008,2(3 Suppl):S7-S12.
pmid: 19352473
|
[9] |
吴亚平, 林予松, 顾建钦, 等. 影像组学的研究进展与挑战[J]. 中华放射学杂志, 2017,51(12):983-985. DOI: 10.3760/cma.j.issn.1005-1201.2017.12.021.
|
[10] |
Wu J, Tha KK, Xing L, et al. Radiomics and radiogenomics for precision radiotherapy[J]. J Radiat Res, 2018,59(suppl_1):i25-i31. DOI: 10.1093/jrr/rrx102.
doi: 10.1093/jrr/rrx102
pmid: 29385618
|
[11] |
Bibault JE, Giraud P, Housset M, et al. Deep learning and radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer[J]. Sci Rep, 2018,8(1):12611. DOI: 10.1038/s41598-018-30657-6.
doi: 10.1038/s41598-018-30657-6
pmid: 30135549
|
[12] |
Chen T, Guestrin C. XGBoost: a scalable tree boosting system, 2016[C]. ACM, 2016.
|
[13] |
Ogunleye AA, Qing-Guo W. XGBoost model for chronic kidney disease diagnosis[J]. IEEE/ACM Trans Comput Biol Bioinform, 2019. DOI: 10.1109/TCBB.2019.2911071.
doi: 10.1109/TCBB.2020.3032651
pmid: 33079651
|
[14] |
Yu D, Liu Z, Su C, et al. Copy number variation in plasma as a tool for lung cancer prediction using extreme gradient boosting (XGBoost) classifier[J]. Thorac Cancer, 2020,11(1):95-102. DOI: 10.1111/1759-7714.13204.
doi: 10.1111/1759-7714.13204
pmid: 31694073
|