Journal of International Oncology ›› 2020, Vol. 47 ›› Issue (5): 308-311.doi: 10.3760/cma.j.cn371439-20200208-00025
• Reviews • Previous Articles Next Articles
Su Hao1, Liu Wenjie2(), Bao Mandula1, Luo Shou1, Wang Xuewei1, Zhao Chuanduo1, Liu Qian1, Wang Xishan1, Zhou Zhixiang1, Zhou Haitao1()
Received:
2020-02-08
Revised:
2020-03-01
Online:
2020-05-08
Published:
2020-07-02
Contact:
Liu Wenjie
E-mail:wenjie6363@163.com;zhouhaitao01745@163.com
Supported by:
Su Hao, Liu Wenjie, Bao Mandula, Luo Shou, Wang Xuewei, Zhao Chuanduo, Liu Qian, Wang Xishan, Zhou Zhixiang, Zhou Haitao. Molecular mechanisms of cetuximab resistance in metastatic colorectal cancer[J]. Journal of International Oncology, 2020, 47(5): 308-311.
[1] |
Kirstein MM, Lange A, Prenzler A, et al. Targeted therapies in metastatic colorectal cancer: a systematic review and assessment of currently available data[J]. Oncologist, 2014,19(11):1156-1168. DOI: 10.1634/theoncologist.2014-0032.
doi: 10.1634/theoncologist.2014-0032 |
[2] |
李敏敏, 毕祥, 王哲海. 转移性结直肠癌抗EGFR单抗获得性耐药的研究进展[J]. 国际肿瘤学杂志, 2014,41(5):357-360. DOI: 10.3760/cma.j.issn.1673-422X.2014.05.012.
doi: 10.3760/cma.j.issn.1673-422X.2014.05.012 |
[3] |
Sotelo MJ, García-Paredes B, Aguado C, et al. Role of cetuximab in first-line treatment of metastatic colorectal cancer[J]. World J Gastroenterol, 2014,20(15):4208-4219. DOI: 10.3748/wjg.v20.i15.4208.
doi: 10.3748/wjg.v20.i15.4208 pmid: 24764659 |
[4] | 刘晓娜, 田庄, 魏晓飞, 等. 联合检测结直肠癌患者血浆及组织中KRAS、NRAS、BRAF及PIK3CA基因突变情况[J]. 中华病理学杂志, 2019,48(5):373-377. DOI: 10.3760/cma.j.issn.0529-5807.2019.05.008. |
[5] |
Limbach C, Laue MM, Wang X, et al. Molecular in situ topology of Aczonin/Piccolo and associated proteins at the mammalian neurotransmitter release site[J]. Proc Natl Acad Sci U S A, 2011,108(31):E392-E401. DOI: 10.1073/pnas.1101707108.
doi: 10.1073/pnas.1101707108 pmid: 21712437 |
[6] |
Douillard JY, Siena S, Cassidy J, et al. Randomized, phase Ⅲ trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study[J]. J Clin Oncol, 2010,28(31):4697-4705. DOI: 10.1200/JCO.2009.27.4860.
doi: 10.1200/JCO.2009.27.4860 pmid: 20921465 |
[7] |
Dienstmann R, De Dosso S, Felip E, et al. Drug development to overcome resistance to EGFR inhibitors in lung and colorectal cancer[J]. Mol Oncol, 2012,6(1):15-26. DOI: 10.1016/j.molonc.2011.11.009.
doi: 10.1016/j.molonc.2011.11.009 |
[8] | Clark JI, Singh J, Ernstoff MS, et al. A multi-center phase Ⅱ study of high dose interleukin-2 sequenced with vemurafenib in patients with BRAF-V600 mutation positive metastatic melanoma[J]. J Immuno-ther Cancer, 2018,6(1):76. DOI: 10.1186/s40425-018-0387-x. |
[9] |
Van Cutsem E, Kohne CH, Láng I, et al. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colo-rectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status[J]. J Clin Oncol, 2011,29(15):2011-2019. DOI: 10.1200/JCO.2010.33.5091.
doi: 10.1200/JCO.2010.33.5091 |
[10] |
Hutchins G, Southward K, Handley K, et al. Value of mismatch repair, KRAS, and BRAF mutations in predicting recurrence and benefits from chemotherapy in colorectal cancer[J]. J Clin Oncol, 2011,29(10):1261-1270. DOI: 10.1200/JCO.2010.30.1366.
doi: 10.1200/JCO.2010.30.1366 |
[11] |
Yuan ZX, Wang XY, Qin QY, et al. The prognostic role of BRAF mutation in metastatic colorectal cancer receiving anti-EGFR monoclonal antibodies: a meta-analysis[J]. PLoS One, 2013,8(6):e65995. DOI: 10.1371/journal.pone.0065995.
doi: 10.1371/journal.pone.0065995 pmid: 23776587 |
[12] |
Haddadi N, Lin Y, Travis G, et al. PTEN/PTENP1: 'regulating the regulator of RTK-dependent PI3K/Akt signalling', new targets for cancer therapy[J]. Mol Cancer, 2018,17(1):37. DOI: 10.1186/s12943-018-0803-3.
doi: 10.1186/s12943-018-0803-3 pmid: 29455665 |
[13] |
Frattini M, Saletti P, Romagnani E, et al. PTEN loss of expression predicts cetuximab efficacy in metastatic colorectal cancer patients[J]. Br J Cancer, 2007,97(8):1139-1145. DOI: 10.1038/sj.bjc.6604009.
doi: 10.1038/sj.bjc.6604009 pmid: 17940504 |
[14] |
Razis E, Pentheroudakis G, Rigakos G, et al. EGFR gene gain and PTEN protein expression are favorable prognostic factors in patients with KRAS wild-type metastatic colorectal cancer treated with cetu-ximab[J]. J Cancer Res Clin Oncol, 2014,140(5):737-748. DOI: 10.1007/s00432-014-1626-2.
doi: 10.1007/s00432-014-1626-2 pmid: 24595598 |
[15] |
De Roock W, Claes B, Bernasconi D, et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis[J]. Lancet Oncol, 2010,11(8):753-762. DOI: 10.1016/S1470-2045(10)70130-3.
doi: 10.1016/S1470-2045(10)70147-9 pmid: 20619739 |
[16] |
Ueda T, Volinia S, Okumura H, et al. Relation between microRNA expression and progression and prognosis of gastric cancer: a micro-RNA expression analysis[J]. Lancet Oncol, 2010,11(2):136-146. DOI: 10.1016/S1470-2045(09)70343-2.
doi: 10.1016/S1470-2045(09)70386-9 pmid: 20022810 |
[17] |
Ruzzo A, Graziano F, Vincenzi B, et al. High let-7a microRNA levels in KRAS-mutated colorectal carcinomas may rescue anti-EGFR therapy effects in patients with chemotherapy-refractory metastatic disease[J]. Oncologist, 2012,17(6):823-829. DOI: 10.1634/theoncologist.2012-0081.
doi: 10.1634/theoncologist.2012-0081 |
[18] |
Mosakhani N, Lahti L, Borze I, et al. MicroRNA profiling predicts survival in anti-EGFR treated chemorefractory metastatic colorectal cancer patients with wild-type KRAS and BRAF[J]. Cancer Genet, 2012,205(11):545-551. DOI: 10.1016/j.cancergen.2012.08.003.
doi: 10.1016/j.cancergen.2012.08.003 pmid: 23098991 |
[19] |
Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer[J]. Oncogene, 2017,36(11):1461-1473. DOI: 10.1038/onc.2016.304.
doi: 10.1038/onc.2016.304 pmid: 27617575 |
[20] |
Ma Y, Yang Y, Wang F, et al. Long non-coding RNA CCAL regulates colorectal cancer progression by activating Wnt/β-catenin signalling pathway via suppression of activator protein 2α[J]. Gut, 2016,65(9):1494-1504. DOI: 10.1136/gutjnl-2014-308392.
doi: 10.1136/gutjnl-2014-308392 pmid: 25994219 |
[21] |
Hu T, Li C. Convergence between Wnt-β-catenin and EGFR signaling in cancer[J]. Mol Cancer, 2010,9(1):236. DOI: 10.1186/1476-4598-9-236.
doi: 10.1186/1476-4598-9-236 |
[22] |
Therkildsen C, Bergmann TK, Henrichsen-Schnack T, et al. The predictive value of KRAS, NRAS, BRAF, PIK3CA and PTEN for anti-EGFR treatment in metastatic colorectal cancer: a systematic review and meta-analysis[J]. Acta Oncol, 2014,53(7):852-864. DOI: 10.3109/0284186X.
doi: 10.3109/0284186X.2014.895036 |
[23] |
Koo BK, Spit M, Jordens I, et al. Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors[J]. Nature, 2012,488(7413):665-669. DOI: 10.1038/nature11308.
doi: 10.1038/nature11308 |
[24] | 徐星宇, 来茂德. 环指蛋白43的结构、功能及其在肿瘤中的作用[J]. 临床与实验病理学杂志, 2016,32(6):673-677. DOI: 10.13315/j.cnki.cjcep.2016.06.017. |
[25] |
Serra S, Chetty R. Rnf43[J]. J Clin Pathol, 2018,71(1):1-6. DOI: 10.1136/jclinpath-2017-204763.
doi: 10.1136/jclinpath-2017-204763 pmid: 29018044 |
[26] |
Lebensohn AM, Rohatgi R. R-spondins can potentiate WNT signaling without LGRs[J]. Elife, 2018,7:e33126. DOI: 10.7554/eLife.33126.
doi: 10.7554/eLife.33126 pmid: 29405118 |
[27] |
Yaeger R, Chatila WK, Lipsyc MD, et al. Clinical sequencing defines the genomic landscape of metastatic colorectal cancer[J]. Cancer Cell, 2018,33(1): 125-136.e3. DOI: 10.1016/j.ccell.2017.12.004.
doi: 10.1016/j.ccell.2017.12.004 pmid: 29316426 |
[28] |
Steinhart Z, Pavlovic Z, Chandrashekhar M, et al. Corrigendum: Genome-wide CRISPR screens reveal a Wnt-FZD5 signaling circuit as a druggable vulnerability of RNF43-mutant pancreatic tumors[J]. Nat Med, 2017,23(11):1384. DOI: 10.1038/nm1117-1384d.
doi: 10.1038/nm1117-1384d pmid: 29117169 |
[29] |
Coffey RJ, Hawkey CJ, Damstrup L, et al. Epidermal growth factor receptor activation induces nuclear targeting of cyclooxygenase-2, basolateral release of prostaglandins, and mitogenesis in polarizing colon cancer cells[J]. Proc Natl Acad Sci U S A, 1997,94(2):657-662. DOI: 10.1073/pnas.94.2.657.
doi: 10.1073/pnas.94.2.657 pmid: 9012840 |
[30] |
Lu Y, Zhao X, Liu Q, et al. lncRNA MIR100HG-derived miR-100 and miR-125b mediate cetuximab resistance via Wnt/β-catenin signaling[J]. Nat Med, 2017,23(11):1331. DOI: 10.1038/nm.4424.
doi: 10.1038/nm.4424 pmid: 29035371 |
[1] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[2] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[3] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[4] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. |
[5] | Wang Peixin, Zhao Jun, Xu Shihong, Jiang Zhaoyang, Wang Xiaoqiang, Yang Hongjuan. Progress of ferroptosis-related mechanisms in osteosarcoma [J]. Journal of International Oncology, 2024, 51(5): 308-311. |
[6] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[7] | Gong Yan, Chen Honglei. Research progress on the mechanism of microRNA regulation of cisplatin resistance in ovarian cancer [J]. Journal of International Oncology, 2024, 51(3): 186-190. |
[8] | Sun Guobao, Yang Qian, Zhuang Qingchun, Gao Binbin, Sun Xiaogang, Song Wei, Sha Dan. Research progress on the histopathological growth patterns of colorectal liver metastasis [J]. Journal of International Oncology, 2024, 51(2): 114-118. |
[9] | Huang Hui, Ding Jianghua. Advances in targeting FGFR2 for treatment of advanced cholangiocarcinoma [J]. Journal of International Oncology, 2023, 50(9): 569-573. |
[10] | Liu Debao, Sun Ziwen, Lu Shoutang, Xu Haidong. Expression and clinical significance of ASB6 in colorectal cancer tissues [J]. Journal of International Oncology, 2023, 50(8): 470-474. |
[11] | An Rong, Liu Meihua, Wang Peichen, Wang Xiaohui. Research progress of Nrf2 in ovarian cancer [J]. Journal of International Oncology, 2023, 50(8): 493-497. |
[12] | Wang Wende, Zeng De. Research progress on the mechanism of endocrine therapy resistance for breast cancer [J]. Journal of International Oncology, 2023, 50(6): 352-356. |
[13] | Li Qingshan, Xie Xin, Zhang Nan, Liu Shuai. Research progress on the application of combining radiotherapy and systemic therapy in breast cancer [J]. Journal of International Oncology, 2023, 50(6): 362-367. |
[14] | Liu Li, Zhu Siqi, Sun Mengying, He Jingdong. Progress of PARP inhibitors in targeted therapy of small cell lung cancer [J]. Journal of International Oncology, 2023, 50(6): 368-372. |
[15] | Chen Zhuo, Tao Jun, Chen Lin, Ke Jing. Value of detection of peripheral blood miR-194 combined with fecal miR-143 in the clinical screening of colorectal cancer [J]. Journal of International Oncology, 2023, 50(5): 268-273. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||