[1] Omuro A, DeAngelis LM. Glioblastoma and other malignant gliomas: a clinical review[J]. JAMA, 2013, 310(17): 1842-1850. DOI: 10.1001/jama.2013.280319.
[2] Liu Y, Yan W, Zhang W, et al. MiR218 reverses high invasiveness of glioblastoma cells by targeting the oncogenic transcription factor LEF1[J]. Oncol Rep, 2012, 28(3): 1013-1021. DOI: 10.3892/or.2012.1902.
[3] Griffin M, Iqbal SA, Sebastian A, et al. Degenerate wave and capacitive coupling increase human MSC invasion and proliferation while reducing cytotoxicity in an in vitro wound healing model[J]. PLoS One, 2011, 6 (8): e23404. DOI: 10.1371/journal.pone.0023404.
[4] Creecy CM, O′neill CF, Arulanandam BP, et al. Mesenchymal stem cell osteodifferentiation in response to alternating electric current[J]. Tissue Eng Part A, 2013, 19(34): 467-474. DOI: 10.1089/ten.tea.2012.0091.
[5] Zhao Z, Watt C, Karystinou A, et al. Directed migration of human bone marrow mesenchymal stem cells in a physiological direct current electric field[J]. Eur Cell Mater, 2011, 22: 344-358.
[6] Yamashita M. Fluctuations in nuclear envelope′s potential mediate synchronization of early neural activity[J]. Biochem Biophys Res Commun, 2011, 406(1): 107-111. DOI: 10.1016/j.bbrc.2011.02.004.
[7] Cuzick J, Holland R, Barth V, et al. Electropotential measurements as a new diagnostic modality for breast cancer[J]. Lancet, 1998, 352 (9125): 359-363.
[8] Mycielska ME, Djamgoz MB. Cellular mechanisms of directcurrent electric field effects: galvanotaxis and metastatic disease[J]. J Cell Sci, 2004, 117 (Pt 9): 1631-1639.
[9] Cao L, Wei D, Reid B, et al. Endogenous electric currents might guide rostral migration of neuroblasts[J]. EMBO Rep, 2013, 14(2): 184-190. DOI: 10.1038/embor.2012.215.
[10] Cuddapah VA, Robel S, Watkins S, et al. A neurocentric perspective on glioma invasion[J]. Nat Rev Neurosci, 2014, 15(7): 455-465. DOI: 10.1038/nrn3765.
[11] 李飞. 脑胶质瘤侵袭生长的相关因素及直流电场诱导U87胶质瘤细胞定向迁移[D]. 重庆: 第三军医大学, 2011.
[12] Li F, Chen T, Hu S, et al. Superoxide mediates direct current electric fieldinduced directional migration of glioma cells through the activation of AKT and ERK[J]. PLoS One, 2013, 8(4): e61195. DOI: 10.1371/journal.pone.0061195.
[13] Huang YJ, Hoffmann G, Wheeler B, et al. Cellular microenvironment modulates the galvanotaxis of brain tumor initiating cells[J]. Sci Rep, 2016, 6: 21583. DOI: 10.1038/srep21583.
[14] Wu S, Wang Y, Guo J, et al. Nanosecond pulsed electric fields as a novel drug free therapy for breast cancer: an in vivo study[J]. Cancer Lett, 2014, 343(2): 268-274. DOI: 10.1016/j.canlet.2013.09.032.
[15] Guo F, Yao C, Li C, et al. In vivo evidences of nanosecond pulsed electric fields for melanoma malignancy treatment on tumorbearing BALB/c nude mice[J]. Technol Cancer Res Treat, 2014, 13(4): 337-344. DOI: 10.7785/tcrt.2012.500385.
[16] Kirson ED, Gurvich Z, Schneiderman R, et al. Disruption of cancer cell replication by alternating electric fields[J]. Cancer Res, 2004, 64(9): 3288-3295. DOI: 10.1158/00085472.
[17] Gutin PH, Wong ET. Noninvasive application of alternating electric fields in glioblastoma: a fourth cancer treatment modality[J]. Am Soc Clin Oncol Educ Book, 2012, 32: 126-131. DOI: 10.14694/EdBook_AM.2012.32.126.
[18] Gera N, Yang A, Holtzman TS, et al. Tumor treating fields perturb the localization of septins and cause aberrant mitotic exit[J]. PLoS One, 2015, 10(5): e0125269. DOI: 10.1371/journal.pone.0125269.
[19] Kim EH, Song HS, Yoo SH, et al. Tumor treating fields inhibit glioblastoma cell migration, invasion and angiogenesis[J]. Oncotarget, 2016, 7(40): 65125-65136. DOI: 10.18632/oncotarget.11372.
[20] Kirson ED, Dbal V, Tovarys F, et al. Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors[J]. Proc Nat Acad Sci USA, 2007, 104(24): 10152-10157. DOI: 10.1073/pnas.0702916104.
[21] Wenger C, Salvador R, Basser PJ, et al. The electric field distribution in the brain during TTFields therapy and its dependence on tissue dielectric properties and anatomy: a computational study[J]. Phys Med Biol, 2015, 60(18): 7339-7357. DOI: 10.1088/00319155/60/18/7339.
[22] Stupp R, Wong ET, Kanner AA, et al. NovoTTF100A versus physician′s choice chemotherapy in recurrent glioblastoma: a randomised phase Ⅲ trial of a novel treatment modality[J]. Eur J Cancer, 2012, 48(14): 2192-2202. DOI: 10.1016/j.ejca.2012.04.011.
[23] Stupp R, Taillibert S , Kanner AA, et al. Maintenance therapy with tumortreating fields plus temozolomide vs temozolomide alone for glioblastoma: a randomized clinical trial[J]. JAMA, 2015, 314 (23): 2535-2543. DOI: 10.1001/jama.2015.16669.
[24] Ansstas G, Tran DD. Treatment with tumortreating fields therapy and pulse dose bevacizumab in patients with bevacizumabrefractory recurrent glioblastoma: a case series[J]. Case Rep Neurol, 2016, 8(1): 1-9. DOI: 10.1159/000442196.
[25] Wong ET, Lok E, Swanson KD. Clinical benefit in recurrent glioblastoma from adjuvant NovoTTF100A and TCCC after temozolomide and bevacizumab failure: a preliminary observation[J]. Cancer Med, 2015, 4(3): 383-391. DOI: 10.1002/cam4.421.
[26] Fonkem E, Wong ET. NovoTTF100A: a new treatment modality for recurrent glioblastoma[J]. Expert Rev Neurother, 2012, 12(8): 895-899.
[27] Turner SG, Gergel T, Wu H, et al. The effect of field strength on glioblastoma multiforme response in patients treated with the NovoTTFTM100A system[J]. World J Surg Oncol, 2014, 12: 162. DOI: 10.1186/1477781912162. |