Journal of International Oncology ›› 2025, Vol. 52 ›› Issue (8): 532-537.doi: 10.3760/cma.j.cn371439-20241203-00090
• Review • Previous Articles Next Articles
Guo Junlong1, Zou Ruiqi1, Chen Shaoqiang1, Liang Yuxin1, Li Jing2, Yong Sunan3, He Yuting1, Xie Xiaobing1, Li Ping1()
Received:
2024-12-03
Revised:
2025-01-24
Online:
2025-08-08
Published:
2025-09-15
Contact:
Li Ping
E-mail:lipingxt@163.com
Supported by:
Guo Junlong, Zou Ruiqi, Chen Shaoqiang, Liang Yuxin, Li Jing, Yong Sunan, He Yuting, Xie Xiaobing, Li Ping. Research progress of RNA m6A modification in breast cancer[J]. Journal of International Oncology, 2025, 52(8): 532-537.
"
项目 | m6A相关基因 | m6A修饰类型 | 靶基因 | 机制 |
---|---|---|---|---|
细胞增殖 | METTL3 | writer | piRNA-31106 | 促进MDM2、CDK4和cyclinD1的表达[ |
lncRNA WFDC21P | 通过WFDC21P/miR-628/SMAD3信号通路进行调节[ | |||
circMETTL3 | 通过circMETTL3/miR-31-5p/CDK1信号通路进行调节[ | |||
LINC00520 | 作为miR-577的竞争性内源RNA进行调节[ | |||
METTL3 YTHDF1 | writer reader | ADAR1 | 通过METTL3/ARHGAP5/YTHDF1信号通路进行调节[ | |
HNRNPC | reader | miR-944 | BACH2通过分子海绵作用刺激HNRNPC表达、通过MAPK信号通路 促进肿瘤细胞增殖[ | |
细胞侵袭、 转移 | METTL3 | writer | ZNF217 | 通过miR-135/ZNF217/METTL3/NANOG信号通路抑制乳腺癌上皮 间质转化的启动[ |
miR-34c-3p | METTL3通过分子海绵作用抑制细胞增殖、侵袭、肿瘤生长和转移[ | |||
KRT7 | 通过促进KRT7-AS/KRT7 mRNA双链体的形成以及KRT7的翻译以 促进乳腺癌的肺转移[ | |||
METTL14 | writer | miR‑146a‑5p | 促进miR-146a-5p的高表达,促进乳腺癌细胞的迁移和侵袭[ | |
FTO | eraser | miR-181b-3p | 通过FTO/miR-181b-3p/ARL5B信号通路促进乳腺癌细胞的迁移和 侵袭[ | |
YTHDF1 | reader | FOXM1 | YTHDF1通过识别并结合m6A修饰的FOXM1 mRNA,加速FOXM1的翻译过程,促进乳腺癌细胞的转移[ | |
生物代谢 | WTAP | writer | ENO1 | C5aR1阳性嗜中性粒细胞通过ERK1/2-WTAP依赖性ENO1的m6A 修饰诱导乳腺癌糖酵解[ |
METTL3 YTHDF2 | writer、reader | LATS1 | 增强LATS1 mRNA表达以促进糖酵解过程[ | |
YTHDF1 | reader | PKM2 | 肿瘤缺氧诱导HIF1α转录,抑制miR-16-5p表达,促进YTHDF1的 表达,进而通过上调PKM2促进糖酵解[ | |
细胞死亡 | METTL14 | writer | LINC00942 | 通过LINC00942-METTL14-CXCR4/CYP1B1信号通路抑制乳腺癌 细胞凋亡[ |
lncRNA UCA1 | 通过METTL14/miR-375/SOX12信号通路抑制乳腺癌细胞凋亡[ | |||
FTO | eraser | eIF4G1 | 5'-tRF-GlyGCC直接结合FTO,并增加FTO去甲基化酶的活性, 降低eIF4G1甲基化,抑制自噬[ | |
肿瘤微环境 | YTHDF1 | reader | 与MYC信号调控和T细胞分化有关[ | |
IGF2BP1 | reader | lncRNA KB-1980E6.3 | 通过lncRNA KB-1980E6.3/IGF2BP1/c-Myc信号通路促进乳腺癌 干细胞在体外和体内缺氧微环境下的自我更新和肿瘤发生[ |
[1] | Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834. |
[2] | Wolff MS, Collman GW, Barrett JC, et al. Breast cancer and environmental risk factors: epidemiological and experimental findings[J]. Annu Rev Pharmacol Toxicol, 1996, 36: 573-596. DOI: 10.1146/annurev.pa.36.040196.003041. |
[3] | Zhou Y, Ćorović M, Hoch-Kraft P, et al. m6A sites in the coding region trigger translation-dependent mRNA decay[J]. Mol Cell, 2024, 84(23): 4576-4593.e12. DOI: 10.1016/j.molcel.2024.10.033. |
[4] | Manoochehri M, Jones M, Tomczyk K, et al. DNA methylation of the long intergenic noncoding RNA 299 gene in triple-negative breast cancer: results from a prospective study[J]. Sci Rep, 2020, 10(1): 11762. DOI: 10.1038/s41598-020-68506-0. |
[5] | 吴家宜, 陈柯羽, 邵喜英, 等. CDK4/6抑制剂通过调控三阴性乳腺癌免疫微环境促进抗肿瘤免疫的机制研究进展[J]. 国际肿瘤学杂志, 2022, 49(6): 362-365. DOI: 10.3760/cma.j.cn371439-20211215-00069. |
[6] | Oerum S, Meynier V, Catala M, et al. A comprehensive review of m6A/m6Am RNA methyltransferase structures[J]. Nucleic Acids Res, 2021, 49(13): 7239-7255. DOI: 10.1093/nar/gkab378. |
[7] | Tang Y, Chen K, Song B, et al. m6A-Atlas: a comprehensive knowledgebase for unraveling the N6-methyladenosine (m6A) epitranscriptome[J]. Nucleic Acids Res, 2021, 49(D1): D134-D143. DOI: 10.1093/nar/gkaa692. |
[8] | Garcias Morales D, Reyes JL. A birds'-eye view of the activity and specificity of the mRNA m6A methyltransferase complex[J]. Wiley Interdiscip Rev RNA, 2021, 12(1): e1618. DOI: 10.1002/wrna.1618. |
[9] | Su S, Li S, Deng T, et al. Cryo-EM structures of human m6A writer complexes[J]. Cell Res, 2022, 32(11): 982-994. DOI: 10.1038/s41422-022-00725-8. |
[10] | Ensinck I, Maman A, Albihlal WS, et al. The yeast RNA methylation complex consists of conserved yet reconfigured components with m6A-dependent and Independent roles[J]. Elife, 2023, 12: RP87860. DOI: 10.7554/eLife.87860. |
[11] | Miyake K, Costa Cruz PH, Nagatomo I, et al. A cancer-associated METTL14 mutation induces aberrant m6A modification, affecting tumor growth[J]. Cell Rep, 2023, 42(7): 112688. DOI: 10.1016/j.celrep.2023.112688. |
[12] | Kuang W, Jin H, Yang F, et al. ALKBH3-dependent m1A demethylation of Aurora A mRNA inhibits ciliogenesis[J]. Cell Discov, 2022, 8(1): 25. DOI: 10.1038/s41421-022-00385-3. |
[13] | Yang Z, Yu GL, Zhu X, et al. Critical roles of FTO-mediated mRNA m6A demethylation in regulating adipogenesis and lipid metabolism: implications in lipid metabolic disorders[J]. Genes Dis, 2022, 9(1): 51-61. DOI: 10.1016/j.gendis.2021.01.005. |
[14] | Ueda Y, Ooshio I, Fusamae Y, et al. AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells[J]. Sci Rep, 2017, 7: 42271. DOI: 10.1038/srep42271. |
[15] | Chen JJ, Lu TZ, Wang T, et al. The m6A reader HNRNPC promotes glioma progression by enhancing the stability of IRAK1 mRNA through the MAPK pathway[J]. Cell Death Dis, 2024, 15(6): 390. DOI: 10.1038/s41419-024-06736-0. |
[16] | Zou Z, He C. The YTHDF proteins display distinct cellular functions on m(6)A-modified RNA[J]. Trends Biochem Sci, 2024, 49(7): 611-621. DOI: 10.1016/j.tibs.2024.04.001. |
[17] | Liu R, Miao J, Jia Y, et al. N6-methyladenosine reader YTHDF2 promotes multiple myeloma cell proliferation through EGR1/p21cip1/waf1/CDK2-Cyclin E1 axis-mediated cell cycle transition[J]. Oncogene, 2023, 42(20): 1607-1619. DOI: 10.1038/s41388-023-02675-w. |
[18] | Li S, Hu W, Gong S, et al. The role of PRRC2B in cerebral vascular remodeling under acute hypoxia in mice[J]. Adv Sci (Weinh), 2023, 10(25): e2300892. |
[19] | Xu W, Li J, He C, et al. METTL3 regulates heterochromatin in mouse embryonic stem cells[J]. Nature, 2021, 591(7849): 317-321. DOI: 10.1038/s41586-021-03210-1. |
[20] | Meng W, Xiao H, Mei P, et al. Critical roles of METTL3 in translation regulation of cancer[J]. Biomolecules, 2023, 13(2): 243. DOI: 10.3390/biom13020243. |
[21] | Li W, Wang X, Li C, et al. Identification and validation of an m6A-related gene signature to predict prognosis and evaluate immune features of breast cancer[J]. Hum Cell, 2023, 36(1): 393-408. DOI: 10.1007/s13577-022-00826-x. |
[22] | Yin H, Zhang X, Yang P, et al. RNA m6A methylation orchestrates cancer growth and metastasis via macrophage reprogramming[J]. Nat Commun, 2021, 12(1): 1394. DOI: 10.1038/s41467-021-21514-8. |
[23] | Lee Q, Song R, Phan DAV, et al. Overexpression of VIRMA confers vulnerability to breast cancers via the m6A-dependent regulation of unfolded protein response[J]. Cell Mol Life Sci, 2023, 80(6): 157. DOI: 10.1007/s00018-023-04799-4. |
[24] | Huang S, Chen B, Qiu P, et al. In vitro study of piwi interaction RNA-31106 promoting breast carcinogenesis by regulating METTL3-mediated m6A RNA methylation[J]. Transl Cancer Res, 2023, 12(6): 1588-1601. |
[25] | Wei YB, Liang DM, Zhang ML, et al. WFDC21P promotes triple-negative breast cancer proliferation and migration through WFDC21P/miR-628/SMAD3 axis[J]. Front Oncol, 2022, 12: 1032850. DOI: 10.3389/fonc.2022.1032850. |
[26] | Li Z, Yang HY, Dai XY, et al. CircMETTL3, upregulated in a m6A-dependent manner, promotes breast cancer progression[J]. Int J Biol Sci, 2021, 17(5): 1178-1190. DOI: 10.7150/ijbs.57783. |
[27] | Guo Y, Feng L. N6-methyladenosine-mediated upregulation of LINC00520 accelerates breast cancer progression via regulating miR-577/POSTN axis and downstream ILK/AKT/mTOR signaling pathway[J]. Arch Biochem Biophys, 2022, 729: 109381. DOI: 10.1016/j.abb.2022.109381. |
[28] | Li Y, Wang NX, Yin C, et al. RNA editing enzyme ADAR1 regulates METTL3 in an editing dependent manner to promote breast cancer progression via METTL3/ARHGAP5/YTHDF1 axis[J]. Int J Mol Sci, 2022, 23(17): 9656. DOI: 10.3390/ijms23179656. |
[29] | Lv W, Tan Y, Xiong M, et al. Analysis and validation of m6A regulatory network: a novel circBACH2/has-miR-944/HNRNPC axis in breast cancer progression[J]. J Transl Med, 2021, 19(1): 527. DOI: 10.1186/s12967-021-03196-4. |
[30] | Xu LM, Zhang J, Ma Y, et al. MicroRNA-135 inhibits initiation of epithelial-mesenchymal transition in breast cancer by targeting ZNF217 and promoting m6A modification of NANOG[J]. Oncogene, 2022, 41(12): 1742-1751. DOI: 10.1038/s41388-022-02211-2. |
[31] | Ruan HG, Gu WC, Xia W, et al. METTL3 is suppressed by circular RNA circMETTL3/miR-34c-3p signaling and limits the tumor growth and metastasis in triple negative breast cancer[J]. Front Oncol, 2021, 11: 778132. DOI: 10.3389/fonc.2021.778132. |
[32] | Chen F, Chen Z, Guan T, et al. N6-methyladenosine regulates mRNA stability and translation efficiency of KRT7 to promote breast cancer lung metastasis[J]. Cancer Res, 2021, 81(11): 2847-2860. DOI: 10.1158/0008-5472.CAN-20-3779. |
[33] | Yi D, Wang R, Shi X, et al. METTL14 promotes the migration and invasion of breast cancer cells by modulating N6‑methyladenosine and hsa‑miR‑146a‑5p expression[J]. Oncol Rep, 2020, 43(5): 1375-1386. DOI: 10.3892/or.2020.7515. |
[34] | Xu Y, Ye S, Zhang N, et al. The FTO/miR-181b-3p/ARL5B signa-ling pathway regulates cell migration and invasion in breast cancer[J]. Cancer Commun (Lond), 2020, 40(10): 484-500. DOI: 10.1002/cac2.12075. |
[35] | Chen H, Yu Y, Yang M, et al. YTHDF1 promotes breast cancer progression by facilitating FOXM1 translation in an m6A-dependent manner[J]. Cell Biosci, 2022, 12(1): 19. DOI: 10.1186/s13578-022-00759-w. |
[36] | Ou B, Liu Y, Yang X, et al. C5aR1-positive neutrophils promote breast cancer glycolysis through WTAP-dependent m6A methylation of ENO1[J]. Cell Death Dis, 2021, 12(8): 737. DOI: 10.1038/s41419-021-04028-5. |
[37] | Xu Y, Song M, Hong Z, et al. The N6-methyladenosine METTL3 regulates tumorigenesis and glycolysis by mediating m6A methylation of the tumor suppressor LATS1 in breast cancer[J]. J Exp Clin Cancer Res, 2023, 42(1): 10. DOI: 10.1186/s13046-022-02581-1. |
[38] | Yao X, Li W, Li L, et al. YTHDF1 upregulation mediates hypoxia-dependent breast cancer growth and metastasis through regulating PKM2 to affect glycolysis[J]. Cell Death Dis, 2022, 13(3): 258. DOI: 10.1038/s41419-022-04711-1. |
[39] | Sun T, Wu Z, Wang X, et al. LNC942 promoting METTL14-mediated m6A methylation in breast cancer cell proliferation and progression[J]. Oncogene, 2020, 39(31): 5358-5372. DOI: 10.1038/s41388-020-1338-9. |
[40] | Zhao C, Ling X, Xia Y, et al. LncRNA UCA1 promotes SOX12 expression in breast cancer by regulating m6A modification of miR-375 by METTL14 through DNA methylation[J]. Cancer Gene Ther, 2022, 29(7): 1043-1055. DOI: 10.1038/s41417-021-00390-w. |
[41] | Chen F, Song C, Meng F, et al. 5'-tRF-GlyGCC promotes breast cancer metastasis by increasing fat mass and obesity-associated protein demethylase activity[J]. Int J Biol Macromol, 2023, 226: 397-409. DOI: 10.1016/j.ijbiomac.2022.11.295. |
[42] | Li C, Zhang C, Zhang G, et al. YTHDF1 amplification is correlated with worse outcome and lower immune cell infiltrations in breast cancer[J]. Cancer Biomark, 2022, 35(2): 127-142. DOI: 10.3233/CBM-203103. |
[43] | Zhu P, He F, Hou Y, et al. A novel hypoxic long noncoding RNA KB-1980E6.3 maintains breast cancer stem cell stemness via interacting with IGF2BP1 to facilitate c-Myc mRNA stability[J]. Oncogene, 2021, 40(9): 1609-1627. DOI: 10.1038/s41388-020-01638-9. |
[44] | Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms[J]. Cell, 2011, 147(2): 275-292. DOI: 10.1016/j.cell.2011.09.024. |
[45] | Zhu W, Zhou BL, Rong LJ, et al. Roles of PTBP1 in alternative splicing, glycolysis, and oncogensis[J]. J Zhejiang Univ Sci B, 2020, 21(2): 122-136. DOI: 10.1631/jzus.B1900422. |
[46] | Liang Y, Wang Y, Zhang Y, et al. HSPB1 facilitates chemoresistance through inhibiting ferroptotic cancer cell death and regulating NF-κB signaling pathway in breast cancer[J]. Cell Death Dis, 2023, 14(7): 434. DOI: 10.1038/s41419-023-05972-0. |
[47] | Zhou S, Liu J, Wan A, et al. Epigenetic regulation of diverse cell death modalities in cancer: a focus on pyroptosis, ferroptosis, cuproptosis, and disulfidptosis[J]. J Hematol Oncol, 2024, 17(1): 22. DOI: 10.1186/s13045-024-01545-6. |
[48] | Deepak KGK, Vempati R, Nagaraju GP, et al. Tumor microenvironment: challenges and opportunities in targeting metastasis of triple negative breast cancer[J]. Pharmacol Res, 2020, 153: 104683. DOI: 10.1016/j.phrs.2020.104683. |
[49] | 谢露露, 丁江华. 免疫治疗在晚期三阴性乳腺癌中的应用进展[J]. 国际肿瘤学杂志, 2023, 50(11): 672-676. DOI: 10.3760/cma.j.cn371439-20230722-00127. |
[50] | Bauer M, Vetter M, Stückrath K, et al. Regional variation in the tumor microenvironment, immune escape and prognostic factors in breast cancer in Sub-Saharan Africa[J]. Cancer Immunol Res, 2023, 11(6): 720-731. DOI: 10.1158/2326-6066.CIR-22-0795. |
[51] | Lian B, Yan S, Li J, et al. HNRNPC promotes collagen fiber alignment and immune evasion in breast cancer via activation of the VIRMA-mediated TFAP2A/DDR1 axis[J]. Mol Med, 2023, 29(1): 103. DOI: 10.1186/s10020-023-00696-5. |
[52] | Topalian SL, Drake CG, Pardoll DM. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity[J]. Curr Opin Immunol, 2012, 24(2): 207-212. DOI: 10.1016/j.coi.2011.12.009. |
[53] | Wan W, Ao X, Chen Q, et al. METTL3/IGF2BP3 axis inhibits tumor immune surveillance by upregulating N6-methyladenosine modification of PD-L1 mRNA in breast cancer[J]. Mol Cancer, 2022, 21(1): 60. DOI: 10.1186/s12943-021-01447-y. |
[54] | Hu Y, Pan Q, Wang M, et al. m6A RNA methylation regulator YTHDF1 correlated with immune microenvironment predicts clinical outcomes and therapeutic efficacy in breast cancer[J]. Front Med (Lausanne), 2021, 8: 667543. DOI: 10.3389/fmed.2021.667543. |
[55] | Dong M, Shen W, Yang G, et al. Analysis of m6A methylation modification patterns and tumor immune microenvironment in breast cancer[J]. Front Cell Dev Biol, 2022, 10: 785058. DOI: 10.3389/fcell.2022.785058. |
[56] | Zhao G, An J, Pu Q, et al. Gene signatures and cancer-immune phenotypes based on m6A regulators in breast cancer[J]. Front Oncol, 2021, 11: 756412. DOI: 10.3389/fonc.2021.756412. |
[1] | Li Chengqiang, Wang Yungang, Yu Yishan, Wu Shizhang, Tao Cheng, Ma Xingmin, Dai Tianyuan, Duan Jinghao, Chen Jinhu, Bai Tong, Zhu Jian. Analysis of dosimetric characteristics of proton radiotherapy in 4 cases of breast cancer [J]. Journal of International Oncology, 2025, 52(7): 448-454. |
[2] | Li Lixi, Duan Boshi, Qian Haili, Ma Fei. Advances in the clinical and translational applications of breast cancer organoids [J]. Journal of International Oncology, 2025, 52(6): 379-381. |
[3] | Zhou Wenkao, Huang Hesen, Pan Yimei, Huang Lingyan, Wang Mingshan, Zhao Fangli, Wang Ya, Tang Huimin. Comparison of the efficacy and construction of prediction model for relapse free survival in breast cancer based on diabetes mellitus type 2 [J]. Journal of International Oncology, 2025, 52(5): 295-303. |
[4] | Wang Zhibao, Li Guangxian, Zhang Xinxin, Cui Wei, Zhang Wei. Predictive value of MRI combined with serum lncRNA KCNQ1OT1, miR-204-5p for axillary lymph node metastasis of breast cancer [J]. Journal of International Oncology, 2025, 52(2): 89-93. |
[5] | Han Xiaoxu, Zhang Nan, Liu Shuai. Progress in the study of the pregnane X receptor in drug resistance in breast cancer [J]. Journal of International Oncology, 2024, 51(9): 590-594. |
[6] | Zhao Biao, Pu Qin, Yuan Meifang, Ma Lishuang, Li Han, Yang Yi, Sun Chaoxi. Dosimetric study of intensity-modulated radiotherapy and volumetric intensity modulated arc therapy based on the inner edge tangent field for radiotherapy after breast-conserving surgery of left-sided breast cancer [J]. Journal of International Oncology, 2024, 51(7): 441-447. |
[7] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[8] | Sa Qiang, Xu Hangcheng, Wang Jiayu. Advances in immunotherapy for breast cancer [J]. Journal of International Oncology, 2024, 51(4): 227-234. |
[9] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[10] | Chen Boguang, Wang Sugui, Zhang Yongjie. Role of serum cholinesterase and inflammatory markers in the prognosis of stage ⅠA -ⅢA breast cancer [J]. Journal of International Oncology, 2024, 51(2): 73-82. |
[11] | Tan Shuangxiu, Zhang Yidan, Wang Ying, Yu Pengli, Kong Wentao, Yao Jing, Chen Qiaoliang. Value of conventional ultrasound combined with shear wave elastography in differentiating non-mass ductal carcinoma in situ from invasive breast cancer [J]. Journal of International Oncology, 2024, 51(12): 743-748. |
[12] | Wang Li, Xiao Han, Huang Guofu. Mechanism of action and clinical significance of circular RNA in triple negative breast cancer [J]. Journal of International Oncology, 2024, 51(12): 774-778. |
[13] | Zhou Mingrui, Qi Mengqi, Zhang Yanyan, Shi Yinuan, Yue Chuan, Zhang Yan, Liu Xianqiang, Zhang Yan. Research progress in the relationship between microbial communities and breast cancer in human tissues [J]. Journal of International Oncology, 2024, 51(12): 779-784. |
[14] | Zhu Bin, Wan Tao, Xu Hua, Jia Hao, Chen Shixin. Value analysis of the prediction model based on multimodal MRI characteristics for the differential diagnosis of benign and malignant BI-RADS 4 types of breast tumors [J]. Journal of International Oncology, 2024, 51(11): 678-683. |
[15] | Tao Jin, Kan Junnan, Yang Caixia, Liu Yan, Lyu Yijie, Wei Junhui, Li Xianglin. Progress of manganese-based nanomaterials in breast cancer diagnosis and treatment [J]. Journal of International Oncology, 2024, 51(10): 645-649. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||