[1] |
Tuveson D, Clevers H. Cancer modeling meets human organoid technology[J]. Science, 2019, 364(6444): 952-955. DOI: 10.1126/science.aaw6985.
pmid: 31171691
|
[2] |
Kopper O, de Witte CJ, Lõhmussaar K, et al. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity[J]. Nat Med, 2019, 25(5): 838-849. DOI: 10.1038/s41591-019-0422-6.
pmid: 31011202
|
[3] |
Sachs N, de Ligt J, Kopper O, et al. A living biobank of breast cancer organoids captures disease heterogeneity[J]. Cell, 2018, 172(1/2): 373-386.e10. DOI: 10.1016/j.cell.2017.11.010.
|
[4] |
Rosenbluth JM, Schackmann RCJ, Gray GK, et al. Organoid cultures from normal and cancer-prone human breast tissues preserve complex epithelial lineages[J]. Nat Commun, 2020, 11(1): 1711. DOI: 10.1038/s41467-020-15548-7.
|
[5] |
Chen P, Zhang X, Ding R, et al. Patient-derived organoids can guide personalized-therapies for patients with advanced breast cancer[J]. Adv Sci (Weinh), 2021, 8(22): e2101176. DOI: 10.1002/advs.202101176.
|
[6] |
Lin YY, Gao HF, Li H, et al. Clinical efficacy of tumor organoid-guided cancer therapy for locally advanced unresectable or metastatic breast cancer[J]. Int J Cancer, 2024, 155(4): 697-709. DOI: 10.1002/ijc.34945.
|
[7] |
Shu D, Shen M, Li K, et al. Organoids from patient biopsy samples can predict the response of BC patients to neoadjuvant chemotherapy[J]. Ann Med, 2022, 54(1): 2581-2597. DOI: 10.1080/07853890.2022.2122550.
pmid: 36194178
|
[8] |
Ye HS, Zhou D, Li H, et al. Organoid forming potential as complementary parameter for accurate evaluation of breast cancer neoadjuvant therapeutic efficacy[J]. Br J Cancer, 2024, 130(7): 1109-1118. DOI: 10.1038/s41416-024-02595-w.
|
[9] |
Beelen NA, Aberle MR, Bruno V, et al. Antibody-dependent cellular cytotoxicity-inducing antibodies enhance the natural killer cell anti-cancer response against patient-derived pancreatic cancer organoids[J]. Front Immunol, 2023, 14: 1133796. DOI: 10.3389/fimmu.2023.1133796.
|
[10] |
Jiang S, Deng T, Cheng H, et al. Macrophage-organoid co-culture model for identifying treatment strategies against macrophage-related gemcitabine resistance[J]. J Exp Clin Cancer Res, 2023, 42(1): 199. DOI: 10.1186/s13046-023-02756-4.
|
[11] |
Ou L, Liu S, Wang H, et al. Patient-derived melanoma organoid models facilitate the assessment of immunotherapies[J]. EBioMedicine, 2023, 92: 104614. DOI: 10.1016/j.ebiom.2023.104614.
|
[12] |
Xu NY, Li J, Wang ML, et al. Fabrication of a coculture organoid model in the biomimetic matrix of alginate to investigate breast cancer progression in a TAMs-leading immune microenvironment[J]. ACS Appl Mater Interfaces, 2024, 16(9): 11275-11288. DOI: 10.1021/acsami.3c17863.
|
[13] |
Guillen KP, Fujita M, Butterfield AJ, et al. A human breast cancer-derived xenograft and organoid platform for drug discovery and precision oncology[J]. Nat Cancer, 2022, 3(2): 232-250. DOI: 10.1038/s43018-022-00337-6.
|
[14] |
Mao Y, Wang W, Yang J, et al. Drug repurposing screening and mechanism analysis based on human colorectal cancer organoids[J]. Protein Cell, 2024, 15(4): 285-304. DOI: 10.1093/procel/pwad038.
|
[15] |
Chen B, Song Y, Zhan Y, et al. Fangchinoline inhibits non-small cell lung cancer metastasis by reversing epithelial-mesenchymal transition and suppressing the cytosolic ROS-related Akt-mTOR signaling pathway[J]. Cancer Lett, 2022, 543: 215783. DOI: 10.1016/j.canlet.2022.215783.
|
[16] |
Ye HS, Gao HF, Li H, et al. Higher efficacy of resveratrol against advanced breast cancer organoids: a comparison with that of clinically relevant drugs[J]. Phytother Res, 2022, 36(8): 3313-3324. DOI: 10.1002/ptr.7515.
|
[17] |
Mo H, Liu X, Xue Y, et al. S6K1 amplification confers innate resistance to CDK4/6 inhibitors through activating c-Myc pathway in patients with estrogen receptor-positive breast cancer[J]. Mol Cancer, 2022, 21(1): 171. DOI: 10.1186/s12943-022-01642-5.
|
[18] |
Arshad M, Azad A, Chan PYK, et al. Neratinib could be effective as monotherapy or in combination with trastuzumab in HER2-low breast cancer cells and organoid models[J]. Br J Cancer, 2024, 130(12): 1990-2002. DOI: 10.1038/s41416-024-02665-z.
|
[19] |
Duarte AA, Gogola E, Sachs N, et al. BRCA-deficient mouse mammary tumor organoids to study cancer-drug resistance[J]. Nat Methods, 2018, 15(2): 134-140. DOI: 10.1038/nmeth.4535.
pmid: 29256493
|
[20] |
Ding K, Chen F, Priedigkeit N, et al. Single cell heterogeneity and evolution of breast cancer bone metastasis and organoids reveals therapeutic targets for precision medicine[J]. Ann Oncol, 2022, 33(10): 1085-1088. DOI: 10.1016/j.annonc.2022.06.005.
pmid: 35764274
|
[21] |
Chew NJ, Lim Kam Sian TCC, Nguyen EV, et al. Evaluation of FGFR targeting in breast cancer through interrogation of patient-derived models[J]. Breast Cancer Res, 2021, 23(1): 82. DOI: 10.1186/s13058-021-01461-4.
|
[22] |
Michels BE, Mosa MH, Streibl BI, et al. Pooled in vitro and in vivo CRISPR-Cas9 screening identifies tumor suppressors in human colon organoids[J]. Cell Stem Cell, 2020, 26(5): 782-792.e7. DOI: 10.1016/j.stem.2020.04.003.
|
[23] |
Lo YH, Kolahi KS, Du Y, et al. A CRISPR/Cas9-engineered ARID1A-deficient human gastric cancer organoid model reveals essential and nonessential modes of oncogenic transformation[J]. Cancer Discov, 2021, 11(6): 1562-1581. DOI: 10.1158/2159-8290.CD-20-1109.
|