
Journal of International Oncology ›› 2025, Vol. 52 ›› Issue (12): 787-790.doi: 10.3760/cma.j.cn371439-20250704-00134
• Review • Previous Articles Next Articles
Received:2025-07-04
Revised:2025-08-10
Online:2025-12-08
Published:2025-12-31
Contact:
Li Mingying
E-mail:limingying2005@126.com
Supported by:Song Xueqin, Li Mingying. Research progress of HOXC10 in digestive system neoplasms[J]. Journal of International Oncology, 2025, 52(12): 787-790.
| [1] | Zhan T, Betge J, Schulte N, et al. Digestive cancers: mechanisms, therapeutics and management[J]. Signal Transduct Target Ther, 2025, 10(1): 24. DOI: 10.1038/s41392-024-02097-4. |
| [2] | Wu Y, He S, Cao M, et al. Comparative analysis of cancer statistics in China and the United States in 2024[J]. Chin Med J (Engl), 2024, 137(24): 3093-3100. DOI: 10.1097/CM9.0000000000003442. |
| [3] | 赵倩雯, 彭丹莉, 秦韬, 等. 1990—2019年全球肿瘤发病死亡分析[J]. 国际肿瘤学杂志, 2023, 50(7): 425-431. DOI: 10.3760/cma.j.cn371439-20230315-00082. |
| [4] | Song H, Hao Y, Xie Q, et al. HOXC10-mediated 'positional memory' regulates cartilage formation subsequent to femoral heterotopic grafting[J]. J Cell Mol Med, 2024, 28(20): e70140. DOI: 10.1111/jcmm.70140. |
| [5] |
Tan HYA, Sim MFM, Tan SX, et al. HOXC10 suppresses browning to maintain white adipocyte identity[J]. Diabetes, 2021, 70(8): 1654-1663. DOI: 10.2337/db21-0114.
pmid: 33990396 |
| [6] | Fang J, Wang J, Yu L, et al. Role of HOXC10 in cancer[J]. Front Oncol, 2021, 11: 684021. DOI: 10.3389/fonc.2021.684021. |
| [7] | Gomes JV, Nicolau-Neto P, de Almeida JN, et al. HOXA7 expression is an independent prognostic biomarker in esophageal squamous cell carcinoma[J]. Genes (Basel), 2024, 15(11): 1430. DOI: 10.3390/genes15111430. |
| [8] | He X, Wang H, Wang R, et al. HOXC10 promotes esophageal squamous cell carcinoma progression by targeting FOXA3 and indicates poor survival outcome[J]. Heliyon, 2023, 9(10): e21056. DOI: 10.1016/j.heliyon.2023.e21056. |
| [9] |
Suo D, Wang Z, Li L, et al. HOXC10 upregulation confers resistance to chemoradiotherapy in ESCC tumor cells and predicts poor prognosis[J]. Oncogene, 2020, 39(32): 5441-5454. DOI: 10.1038/s41388-020-1375-4.
pmid: 32587398 |
| [10] | Xi Y, Lin Y, Guo W, et al. Multi-omic characterization of genome-wide abnormal DNA methylation reveals diagnostic and prognostic markers for esophageal squamous-cell carcinoma[J]. Signal Transduct Target Ther, 2022, 7(1): 53. DOI: 10.1038/s41392-022-00873-8. |
| [11] |
Yu Q, Xia N, Zhao Y, et al. Genome-wide methylation profiling identify hypermethylated HOXL subclass genes as potential markers for esophageal squamous cell carcinoma detection[J]. BMC Med Genomics, 2022, 15(1): 247. DOI: 10.1186/s12920-022-01401-x.
pmid: 36447287 |
| [12] |
Su J, Huang YH, Cui X, et al. Homeobox oncogene activation by pan-cancer DNA hypermethylation[J]. Genome Biol, 2018, 19(1): 108. DOI: 10.1186/s13059-018-1492-3.
pmid: 30097071 |
| [13] | 张丽媛, 郭舒静. 胃癌组织中HOXC10表达与临床病理特征的关系分析[J]. 临床医学工程, 2023, 30(7): 1015-1016. DOI: 10.3969/j.issn.1674-4659.2023.07.1015. |
| [14] | Yao S, He L, Zhang Y, et al. HOXC10 promotes gastric cancer cell invasion and migration via regulation of the NF-κB pathway[J]. Biochem Biophys Res Commun, 2018, 501(3): 628-635. DOI: 10.1016/j.bbrc.2018.05.019. |
| [15] | Sandoval C, Nisson K, Fregoso OI. HIV-1 Vpr-induced DNA damage activates NF-κB through ATM-NEMO independent of cell cycle arrest[J]. mBio, 2024, 15(10): e0024024. DOI: 10.1128/mbio.00240-24. |
| [16] |
Li J, Tong G, Huang C, et al. HOXC10 promotes cell migration, invasion, and tumor growth in gastric carcinoma cells through upregulating proinflammatory cytokines[J]. J Cell Physiol, 2020, 235(4): 3579-3591. DOI: 10.1002/jcp.29246.
pmid: 31552684 |
| [17] | Lin ZH, He JM, Lai SC, et al. HOXC10 indicates poor survival outcome in gastric cancer and promotes G1/S cell cycle transition through transcriptional repression of p21[J]. Neoplasma, 2022, 69(6): 1303-1313. DOI: 10.4149/neo_2022_220609N615. |
| [18] |
Kim J, Bae DH, Kim JH, et al. HOXC10 overexpression promotes cell proliferation and migration in gastric cancer[J]. Oncol Rep, 2019, 42(1): 202-212. DOI: 10.3892/or.2019.7164.
pmid: 31115563 |
| [19] | Li J, Sun K, Zhang M, et al. Long non-coding RNA CYTOR enhances gastric carcinoma proliferation, migration and invasion via the miR-136-5p/HOXC10 axis[J]. Am J Cancer Res, 2023, 13(6): 2714-2731. |
| [20] |
He J, Ge Q, Lin Z, et al. MiR-129-5p induces cell cycle arrest through modulating HOXC10/Cyclin D1 to inhibit gastric cancer progression[J]. FASEB J, 2020, 34(6): 8544-8557. DOI: 10.1096/fj.201903217R.
pmid: 32356314 |
| [21] | Yu J, Zhang X, Ma Y, et al. MiR-129-5p restrains apatinib resistance in human gastric cancer cells via downregulating HOXC10[J]. Cancer Biother Radiopharm, 2021, 36(1): 95-105. DOI: 10.1089/cbr.2019.3107. |
| [22] |
Dang Y, Chen J, Feng W, et al. Interleukin 1β-mediated HOXC10 overexpression promotes hepatocellular carcinoma metastasis by upregulating PDPK1 and VASP[J]. Theranostics, 2020, 10(8): 3833-3848. DOI: 10.7150/thno.41712.
pmid: 32206125 |
| [23] | Li M, Guo Q, Shi Q, et al. m6A-mediated upregulation of HOXC10 promotes human hepatocellular carcinoma development through PTEN/AKT/mTOR signaling pathway[J]. Horm Cancer, 2023, 14(1): 175. DOI: 10.1007/s12672-023-00786-0. |
| [24] |
Enteghami M, Ghorbani M, Zamani M, et al. HOXC10 is significantly overexpressed in colorectal cancer[J]. Biomed Rep, 2020, 13(3): 18. DOI: 10.3892/br.2020.1325.
pmid: 32765857 |
| [25] | Xie Y, Chen R, Yan L, et al. Transcription factor HOXC10 activates the expression of MTFR2 to regulate the proliferation, invasion and migration of colorectal cancer cells[J]. Mol Med Rep, 2021, 24(5): 797. DOI: 10.3892/mmr.2021.12437. |
| [26] |
Yu J, Chen X, Zhao S, et al. HOXC10 promotes metastasis in colorectal cancer by recruiting myeloid-derived suppressor cells[J]. J Cancer, 2022, 13(12): 3308-3317. DOI: 10.7150/jca.76945.
pmid: 36186898 |
| [27] |
Sieminska I, Baran J. Myeloid-derived suppressor cells in colorectal cancer[J]. Front Immunol, 2020, 11: 1526. DOI: 10.3389/fimmu.2020.01526.
pmid: 32849517 |
| [28] | Chen Z, Wu J, Liu B, et al. Identification of cis-HOX-HOXC10 axis as a therapeutic target for colorectal tumor-initiating cells without APC mutations[J]. Cell Rep, 2021, 36(4): 109431. DOI: 10.1016/j.celrep.2021.109431. |
| [1] | Wu Shiwei, Pei Kangjia, Zhang Dongxing, Qin Zhanyu, Guo Shuxia. Advances in the study of EVI1 in acute myeloid leukemia [J]. Journal of International Oncology, 2024, 51(7): 474-477. |
| [2] | Guo Zehao, Zhang Junwang. Role of PFDN and its subunits in tumorigenesis and tumor development [J]. Journal of International Oncology, 2024, 51(6): 350-353. |
| [3] | Wang Li, Xiao Han, Huang Guofu. Mechanism of action and clinical significance of circular RNA in triple negative breast cancer [J]. Journal of International Oncology, 2024, 51(12): 774-778. |
| [4] | Ye Tongtong, Wu Zeyu, Xi Wenyi, Wang Zhiwei, Jiang Xiaochun, Zhao Chenhui. Role of ABRACL in the occurrence and development of malignant tumors [J]. Journal of International Oncology, 2023, 50(9): 544-547. |
| [5] | Liu Bohan, Huang Junxing. Research progress of solute carriers related genes in malignant tumors [J]. Journal of International Oncology, 2023, 50(5): 280-284. |
| [6] | Xu Kai, Wen Gang, Li Rui, Tian Yuan. Research progress on the prognostic value of the ratio of lymphocytes to C-reactive protein in digestive system neoplasms [J]. Journal of International Oncology, 2022, 49(10): 627-629. |
| [7] | Zhang Jing, Huang Shouguo, Xia Ying. Mechanism study of CeRNA regulatory network mediating malignant tumor phenotype [J]. Journal of International Oncology, 2021, 48(9): 544-548. |
| [8] | Ju Xinyue, Hu Chunmei, Zhao Yue, Tang Yan. CDX2 and gastrointestinal neoplasms [J]. Journal of International Oncology, 2021, 48(6): 374-376. |
| [9] | Liu Peipei, Yang Mengxue, Yan Xuebing. Research advances of m6A methylation modification in digestive system neoplasms [J]. Journal of International Oncology, 2021, 48(11): 688-692. |
| [10] | Ren Meng, Gao Yan, Chen Qi, Yue Wentao. Application of keratins in cancer diagnosis and prognosis [J]. Journal of International Oncology, 2020, 47(6): 360-363. |
| [11] | Zhao Congxuan, Yu Tao. Mining and prediction of glioma-related genes [J]. Journal of International Oncology, 2020, 47(5): 293-296. |
| [12] | Ma Yingji, Sun Libin, Qiu Wensheng. Mechanism of long non-coding RNA GHET1 in tumors of the digestive system [J]. Journal of International Oncology, 2020, 47(5): 304-307. |
| [13] | Zhu Zemin, Xie Zhiqin, Sun Yongkang, Tang Caixi. MicroRNA-223 and digestive system tumors [J]. Journal of International Oncology, 2020, 47(2): 112-114. |
| [14] | Wang Zhao, Wang Yingnan, Ni Jixiang, Zhu Jing. Expression and role of Hippo signaling pathway in non-small cell lung cancer [J]. Journal of International Oncology, 2019, 46(4): 239-242. |
| [15] | Qi Ruili, Wang Huaqing. Research progress of tumor vascular targeting drugs combined with PD-1/PD-L1 antibody in the treatment of digestive system tumors [J]. Journal of International Oncology, 2019, 46(12): 750-754. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
