Journal of International Oncology ›› 2024, Vol. 51 ›› Issue (3): 186-190.doi: 10.3760/cma.j.cn371439-20231109-00030
• Reviews • Previous Articles Next Articles
Received:
2023-11-09
Revised:
2023-11-19
Online:
2024-03-08
Published:
2024-04-10
Contact:
Chen Honglei, Email: Gong Yan, Chen Honglei. Research progress on the mechanism of microRNA regulation of cisplatin resistance in ovarian cancer[J]. Journal of International Oncology, 2024, 51(3): 186-190.
[1] | Cao W, Chen HD, Yu YW, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020[J]. Chin Med J (Engl), 2021, 134(7): 783-791. DOI: 10.1097/CM9.0000000000001474. |
[2] | Dou L, Zhang Y. MiR-4461 regulates the proliferation and metastasis of ovarian cancer cells and cisplatin resistance[J]. Front Oncol, 2021, 11: 614035. DOI: 10.3389/fonc.2021.614035. |
[3] |
Biamonte F, Santamaria G, Sacco A, et al. MicroRNA let-7g acts as tumor suppressor and predictive biomarker for chemoresistance in human epithelial ovarian cancer[J]. Sci Rep, 2019, 9(1): 5668. DOI: 10.1038/s41598-019-42221-x.
pmid: 30952937 |
[4] | Song M, Cui M, Liu K. Therapeutic strategies to overcome cisplatin resistance in ovarian cancer[J]. Eur J Med Chem, 2022, 232: 114205. DOI: 10.1016/j.ejmech.2022.114205. |
[5] | Wang Z, Zhou X, Deng X, et al. MiR-186-ANXA9 signaling inhibits tumorigenesis in breast cancer[J]. Front Oncol, 2023, 13: 1166666. DOI: 10.3389/fonc.2023.1166666. |
[6] | Kou X, Ding H, Li L, et al. Hsa-miR-105-1 regulates cisplatin-resistance in ovarian carcinoma cells by targeting ANXA9[J]. Anal Cell Pathol (Amst), 2021, 2021: 6662486. DOI: 10.1155/2021/6662486. |
[7] | Arora S, Heyza JR, Chalfin EC, et al. Gap junction intercellular communication positively regulates cisplatin toxicity by inducing DNA damage through bystander signaling[J]. Cancers (Basel), 2018, 10(10): 368. DOI: 10.3390/cancers10100368. |
[8] |
Yu X, Zhang X, Wang G, et al. MiR-206 as a prognostic and sensitivity biomarker for platinum chemotherapy in epithelial ovarian cancer[J]. Cancer Cell Int, 2020, 20(1): 534. DOI: 10.1186/s12935-020-01623-y.
pmid: 33292230 |
[9] | Lin L, Wu Q, Lu F, et al. Nrf2 signaling pathway: current status and potential therapeutic targetable role in human cancers[J]. Front Oncol, 2023, 13: 1184079. DOI: 10.3389/fonc.2023.1184079. |
[10] |
Huang W, Chen L, Zhu K, et al. Oncogenic microRNA-181d binding to OGT contributes to resistance of ovarian cancer cells to cisplatin[J]. Cell Death Discov, 2021, 7(1): 379. DOI: 10.1038/s41420-021-00715-6.
pmid: 34876558 |
[11] |
Wu J, Bao L, Zhang Z, et al. Nrf2 induces cisplatin resistance via suppressing the iron export related gene SLC40A1 in ovarian cancer cells[J]. Oncotarget, 2017, 8(55): 93502-93515. DOI: 10.18632/oncotarget.19548.
pmid: 29212168 |
[12] | Wu J, Zhang L, Wu S, et al. MiR-194-5p inhibits SLC40A1 expression to induce cisplatin resistance in ovarian cancer[J]. Pathol Res Pract, 2020, 216(7): 152979. DOI: 10.1016/j.prp.2020.152979. |
[13] |
Li B, Xu X, Zheng L, et al. MiR-590-5p promotes cisplatin resistance via targeting hMSH2 in ovarian cancer[J]. Mol Biol Rep, 2023, 50(8): 6819-6827. DOI: 10.1007/s11033-023-08599-8.
pmid: 37392283 |
[14] |
Wang T, Hao D, Yang S, et al. MiR-211 facilitates platinum chemosensitivity by blocking the DNA damage response (DDR) in ovarian cancer[J]. Cell Death Dis, 2019, 10(7): 495. DOI: 10.1038/s41419-019-1715-x.
pmid: 31235732 |
[15] |
Wang J, Liu L. MiR-149-3p promotes the cisplatin resistance and EMT in ovarian cancer through downregulating TIMP2 and CDKN1A[J]. J Ovarian Res, 2021, 14(1): 165. DOI: 10.1186/s13048-021-00919-5.
pmid: 34798882 |
[16] |
Guo H, Ha C, Dong H, et al. Cancer-associated fibroblast-derived exosomal microRNA-98-5p promotes cisplatin resistance in ovarian cancer by targeting CDKN1A[J]. Cancer Cell Int, 2019, 19: 347. DOI: 10.1186/s12935-019-1051-3.
pmid: 31889899 |
[17] | Wang Y, Yan C, Qi J, et al. MiR-874-3p mitigates cisplatin resistance through modulating NF-κB/inhibitor of apoptosis protein signaling pathway in epithelial ovarian cancer cells[J]. Mol Cell Biochem, 2022, 477(1): 307-317. DOI: 10.1007/s11010-021-04271-6. |
[18] |
Li X, Chen W, Jin Y, et al. MiR-142-5p enhances cisplatin-induced apoptosis in ovarian cancer cells by targeting multiple anti-apoptotic genes[J]. Biochem Pharmacol, 2019, 161: 98-112. DOI: 10.1016/j.bcp.2019.01.009.
pmid: 30639456 |
[19] | Todeschini P, Salviato E, Romani C, et al. Comprehensive profiling of hypoxia-related miRNAs identifies miR-23a-3p overexpression as a marker of platinum resistance and poor prognosis in high-grade serous ovarian cancer[J]. Cancers (Basel), 2021, 13(13): 3358. DOI: 10.3390/cancers13133358. |
[20] |
Xiang Y, Chen YJ, Yan YB, et al. MiR-186 bidirectionally regulates cisplatin sensitivity of ovarian cancer cells via suppres-sing targets PIK3R3 and PTEN and upregulating APAF1 expression[J]. J Cancer, 2020, 11(12): 3446-3453. DOI: 10.7150/jca.41135.
pmid: 32284740 |
[21] |
Belur Nagaraj A, Knarr M, Sekhar S, et al. The miR-181a-SFRP4 axis regulates Wnt activation to drive stemness and platinum resistance in ovarian cancer[J]. Cancer Res, 2021, 81(8): 2044-2055. DOI: 10.1158/0008-5472.CAN-20-2041.
pmid: 33574092 |
[22] | Liu HR, Zhao J. Effect and mechanism of miR-217 on drug resistance, invasion and metastasis of ovarian cancer cells through a regulatory axis of CUL4B gene silencing/inhibited Wnt/β-catenin signaling pathway activation[J]. Eur Rev Med Pharmacol Sci, 2021, 25(1): 94-107. DOI: 10.26355/eurrev_202101_24353. |
[23] | Ge T, Liu T, Guo L, et al. MicroRNA-302 represses epithelial-mesenchymal transition and cisplatin resistance by regulating ATAD2 in ovarian carcinoma[J]. Exp Cell Res, 2020, 396(1): 112241. DOI: 10.1016/j.yexcr.2020.112241. |
[24] |
Xiao S, Li Y, Pan Q, et al. MiR-34c/SOX9 axis regulates the chemoresistance of ovarian cancer cell to cisplatin-based chemotherapy[J]. J Cell Biochem, 2019, 120(3): 2940-2953. DOI: 10.1002/jcb.26865.
pmid: 30537410 |
[25] | Zhang XY, Li YF, Ma H, et al. Regulation of MYB mediated cisplatin resistance of ovarian cancer cells involves miR-21-wnt signaling axis[J]. Sci Rep, 2020, 10(1): 6893. DOI: 10.1038/s41598-020-63396-8. |
[26] | Sun Y, Wu J, Dong X, et al. MicroRNA-506-3p increases the response to PARP inhibitors and cisplatin by targeting EZH2/β-catenin in serous ovarian cancers[J]. Transl Oncol, 2021, 14(2): 100987. DOI: 10.1016/j.tranon.2020.100987. |
[27] | Campos Gudiño R, McManus KJ, Hombach-Klonisch S. Aberrant HMGA2 expression sustains genome instability that promotes metastasis and therapeutic resistance in colorectal cancer[J]. Cancers (Basel), 2023, 15(6): 1735. DOI: 10.3390/cancers15061735. |
[28] | Song Z, Liao C, Yao L, et al. MiR-219-5p attenuates cisplatin resistance of ovarian cancer by inactivating Wnt/β-catenin signa-ling and autophagy via targeting HMGA2[J]. Cancer Gene Ther, 2023, 30(4): 596-607. DOI: 10.1038/s41417-022-00574-y. |
[29] |
Zhou Y, Wang C, Ding J, et al. MiR-133a targets YES1 to reduce cisplatin resistance in ovarian cancer by regulating cell autophagy[J]. Cancer Cell Int, 2022, 22(1): 15. DOI: 10.1186/s12935-021-02412-x.
pmid: 35012539 |
[30] |
Cai Y, An B, Yao D, et al. MicroRNA miR-30a inhibits cisplatin resistance in ovarian cancer cells through autophagy[J]. Bioengineered, 2021, 12(2): 10713-10722. DOI: 10.1080/21655979.2021.2001989.
pmid: 34747309 |
[31] |
Hu Z, Cai M, Zhang Y, et al. MiR-29c-3p inhibits autophagy and cisplatin resistance in ovarian cancer by regulating FOXP1/ATG14 pathway[J]. Cell Cycle, 2020, 19(2): 193-206. DOI: 10.1080/15384101.2019.1704537.
pmid: 31885310 |
[32] | Yu JL, Gao X. MicroRNA 1301 inhibits cisplatin resistance in human ovarian cancer cells by regulating EMT and autophagy[J]. Eur Rev Med Pharmacol Sci, 2020, 24(4): 1688-1696. DOI: 10. 26355/eurrev_202002_20343. |
[33] |
Han X, Liu D, Zhou Y, et al. The negative feedback between miR-143 and DNMT3A regulates cisplatin resistance in ovarian cancer[J]. Cell Biol Int, 2021, 45(1): 227-237. DOI: 10.1002/cbin.11486.
pmid: 33090550 |
[34] |
Li H, Lei Y, Li S, et al. MicroRNA-20a-5p inhibits the autophagy and cisplatin resistance in ovarian cancer via regulating DNMT3B-mediated DNA methylation of RBP1[J]. Reprod Toxicol, 2022, 109: 93-100. DOI: 10.1016/j.reprotox.2021.12.011.
pmid: 34990753 |
[35] |
Khajehnoori S, Zarei F, Mazaheri M, et al. Epidrug modulated expression of miR-152 and miR-148a reverse cisplatin resistance in ovarian cancer cells: an experimental in-vitro study[J]. Iran J Pharm Res, 2020, 19(3): 509-519. DOI: 10.22037/ijpr.2020.15450.13217.
pmid: 33680048 |
[36] |
Liu J, Zhang X, Huang Y, et al. MiR-200b and miR-200c co-contribute to the cisplatin sensitivity of ovarian cancer cells by targeting DNA methyltransferases[J]. Oncol Lett, 2019, 17(2): 1453-1460. DOI: 10.3892/ol.2018.9745.
pmid: 30675199 |
[37] |
Sun J, Cai X, Yung MM, et al. MiR-137 mediates the functional link between c-Myc and EZH2 that regulates cisplatin resistance in ovarian cancer[J]. Oncogene, 2019, 38(4): 564-580. DOI: 10. 1038/s41388-018-0459-x.
pmid: 30166592 |
[38] |
Zou Y, Zhao Z, Wang J, et al. Extracellular vesicles carrying miR-6836 derived from resistant tumor cells transfer cisplatin resistance of epithelial ovarian cancer via DLG2-YAP1 signaling pathway[J]. Int J Biol Sci, 2023, 19(10): 3099-3114. DOI: 10.7150/ijbs.83264.
pmid: 37416779 |
[39] | Ni YL, Chien PJ, Hsieh HC, et al. Disulfiram/copper suppresses cancer stem cell activity in differentiated thyroid cancer cells by inhibiting BMI1 expression[J]. Int J Mol Sci, 2022, 23(21): 13276. DOI: 10.3390/ijms232113276. |
[40] | Zhang XL, Sun BL, Tian SX, et al. MicroRNA-132 reverses cisplatin resistance and metastasis in ovarian cancer by the targeted regulation on Bmi-1[J]. Eur Rev Med Pharmacol Sci, 2019, 23(9): 3635-3644. DOI: 10.26355/eurrev_201905_17787. |
[41] | Peng DJ, Wang J, Zhou JY, et al. Role of the Akt/mTOR survival pathway in cisplatin resistance in ovarian cancer cells[J]. Biochem Biophys Res Commun, 2010, 394(3): 600-605. DOI: 10.1016/j.bbrc.2010.03.029. |
[42] | Chen Y, Wang L, Zhou J. Effects of microRNA-1271 on ovarian cancer via inhibition of epithelial-mesenchymal transition and cisplatin resistance[J]. J Obstet Gynaecol Res, 2019, 45(11): 2243-2254. DOI: 10.1111/jog.14079. |
[43] |
Zhang S, O'Regan R, Xu W. The emerging role of mediator complex subunit 12 in tumorigenesis and response to chemotherapeutics[J]. Cancer, 2020, 126(5): 939-948. DOI: 10.1002/cncr.32672.
pmid: 31869450 |
[44] | Shi Y, Zou Y, Guo Y, et al. Exosomal transfer of miR-548aq-3p confers cisplatin resistance via Med12 downregulation in epithelial ovarian cancer[J]. Am J Cancer Res, 2023, 13(5): 1999-2012. |
[45] |
Sad LMAE, Mohamed DA, Elanwar NM, et al. CXCR4 and RIF1 overexpression induces resistance of epithelial ovarian cancer to cisplatin-based chemotherapy[J]. J Cancer Res Ther, 2021, 17(6): 1454-1461. DOI: 10.4103/jcrt.JCRT_480_19.
pmid: 34916377 |
[46] |
Yao W, Wang Y, Huang M, et al. MiR-30a-5p enhances cisplatin sensitivity by downregulating RIF1 in ovarian cancer[J]. Ann Clin Lab Sci, 2023, 53(3): 418-426.
pmid: 37437929 |
[1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou. Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer [J]. Journal of International Oncology, 2024, 51(6): 321-325. |
[2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[3] | Yuan Jian, Huang Yanhua. Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer [J]. Journal of International Oncology, 2024, 51(6): 338-343. |
[4] | Chen Hongjian, Zhang Suqing. Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients [J]. Journal of International Oncology, 2024, 51(6): 344-349. |
[5] | Guo Zehao, Zhang Junwang. Role of PFDN and its subunits in tumorigenesis and tumor development [J]. Journal of International Oncology, 2024, 51(6): 350-353. |
[6] | Zhang Baihong, Yue Hongyun. Advances in anti-tumor drugs with new mechanisms of action [J]. Journal of International Oncology, 2024, 51(6): 354-358. |
[7] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[8] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[9] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[10] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[11] | Liu Jing, Liu Qin, Huang Mei. Prognostic model construction of lung infection in patients with chemoradiotherapy for esophageal cancer based on SMOTE algorithm [J]. Journal of International Oncology, 2024, 51(5): 267-273. |
[12] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. |
[13] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. |
[14] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi. Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer [J]. Journal of International Oncology, 2024, 51(5): 286-291. |
[15] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||