Journal of International Oncology ›› 2024, Vol. 51 ›› Issue (3): 181-185.doi: 10.3760/cma.j.cn371439-20231026-00029
• Reviews • Previous Articles Next Articles
Peng Qin, Cai Yuting, Wang Wei()
Received:
2023-10-26
Revised:
2023-11-28
Online:
2024-03-08
Published:
2024-04-10
Contact:
Wang Wei, Email: Supported by:
Peng Qin, Cai Yuting, Wang Wei. Advances on KPNA2 in liver cancer[J]. Journal of International Oncology, 2024, 51(3): 181-185.
[1] | Rumgay H, Ferlay J, de Martel C, et al. Global, regional and national burden of primary liver cancer by subtype[J]. Eur J Cancer, 2022, 161: 108-118. DOI: 10.1016/j.ejca.2021.11.023. |
[2] | Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660. |
[3] | Cheung TT, Wai-Hung Ho D, Lyu SX, et al. Multimodal integrative genomics and pathology analyses in neoadjuvant nivolumab treatment for intermediate and locally advanced hepatocellular carcinoma[J]. Liver Cancer, 2024, 13(1): 70-88. DOI: 10.1159/000531176. |
[4] | Zhang L, Zhang YM, Wang CD, et al. Integrated single-cell RNA sequencing analysis reveals distinct cellular and transcriptional modules associated with survival in lung cancer[J]. Signal Transduct Target Ther, 2022, 7(1): 9. DOI: 10.1038/s41392-021-00824-9. |
[5] | Jensen JB, Munksgaard PP, Sørensen CM, et al. High expression of karyopherin-α 2 defines poor prognosis in non-muscle-invasive bladder cancer and in patients with invasive bladder cancer undergoing radical cystectomy[J]. Eur Urol, 2011, 59(5): 841-848. DOI: 10.1016/j.eururo.2011.01.048. |
[6] | Guo XG, Wang ZH, Zhang JN, et al. Upregulated KPNA2 promotes hepatocellular carcinoma progression and indicates prognostic significance across human cancer types[J]. Acta Biochim Biophys Sin (Shanghai), 2019, 51(3): 285-292. DOI: 10.1093/abbs/gmz003. |
[7] | Han Y, Wang X. The emerging roles of KPNA2 in cancer[J]. Life Sci, 2020, 241: 117140. DOI: 10.1016/j.lfs.2019.117140. |
[8] | Yang XY, Wang H, Zhang L, et al. Novel roles of karyopherin subunit alpha 2 in hepatocellular carcinoma[J]. Biomed Pharmacother, 2023, 163: 114792. DOI: 10.1016/j.biopha.2023.114792. |
[9] | Nakanishi A, Okumura H, Hashita T, et al. Ivermectin inhibits HBV entry into the nucleus by suppressing KPNA2[J]. Viruses, 2022, 14(11): 2468. DOI: 10.3390/v14112468. |
[10] | Zhao LN, Yuan HF, Wang YF, et al. HBV confers innate immune evasion through triggering HAT1/acetylation of H4K5/H4K12/miR-181a-5p or KPNA2/cGAS-STING/IFN-Ⅰ signaling[J]. J Med Virol, 2023, 95(7): e28966. DOI: 10.1002/jmv.28966. |
[11] | Gao CL, Wang GW, Yang GQ, et al. Karyopherin subunit-α2 expression accelerates cell cycle progression by upregulating CCNB2 and CDK1 in hepatocellular carcinoma[J]. Oncol Lett, 2018, 15(3): 2815-2820. DOI: 10.3892/ol.2017.7691. |
[12] |
Zeng FC, Luo LM, Li DY, et al. KPNA2 interaction with CBX8 contributes to the development and progression of bladder cancer by mediating the PRDM1/c-FOS pathway[J]. J Transl Med, 2021, 19(1): 112. DOI: 10.1186/s12967-021-02709-5.
pmid: 33731128 |
[13] |
Chen T, Liu R, Niu Y, et al. HIF-1α-activated long non-coding RNA KDM4A-AS1 promotes hepatocellular carcinoma progression via the miR-411-5p/KPNA2/AKT pathway[J]. Cell Death Dis, 2021, 12(12): 1152. DOI: 10.1038/s41419-021-04449-2.
pmid: 34903711 |
[14] | Chakraborty S, Anand S, Coe S, et al. The PCOS-NAFLD multidisease phenotype occurred in medaka fish four generations after the removal of bisphenol a exposure[J]. Environ Sci Technol, 2023, 57(34): 12602-12619. DOI: 10.1021/acs.est.3c01922. |
[15] |
Romanovsky E, Kluck K, Ourailidis I, et al. Homogenous TP53mut-associated tumor biology across mutation and cancer types revealed by transcriptome analysis[J]. Cell Death Discov, 2023, 9(1): 126. DOI: 10.1038/s41420-023-01413-1.
pmid: 37059713 |
[16] |
Tang GF, Zhao HB, Xie ZT, et al. Long non-coding RNA HAGLROS facilitates tumorigenesis and progression in hepatocellular carcinoma by sponging miR-26b-5p to up-regulate karyopherin α2 (KPNA2) and inactivate p53 signaling[J]. Bioengineered, 2022, 13(3): 7829-7846. DOI: 10.1080/21655979.2022.2049472.
pmid: 35291921 |
[17] | Park SH, Ham S, Lee A, et al. NLRP3 negatively regulates Treg differentiation through KPNA2-mediated nuclear translocation[J]. J Biol Chem, 2019, 294(47): 17951-17961. DOI: 10.1074/jbc.RA119.010545. |
[18] | Zhang JZ, Zhang XZ, Wang LX, et al. Multiomics-based analyses of KPNA2 highlight its multiple potentials in hepatocellular carcinoma[J]. PeerJ, 2021, 9: e12197. DOI: 10.7717/peerj.12197. |
[19] | Dou CW, Zhou ZY, Xu QR, et al. Hypoxia-induced TUFT1 promotes the growth and metastasis of hepatocellular carcinoma by activating the Ca2+/PI3K/AKT pathway[J]. Oncogene, 2019, 38(8): 1239-1255. DOI: 10.1038/s41388-018-0505-8. |
[20] |
Wang P, Zhao YH, Liu KJ, et al. Wip1 cooperates with KPNA2 to modulate the cell proliferation and migration of colorectal cancer via a p53-dependent manner[J]. J Cell Biochem, 2019, 120(9): 15709-15718. DOI: 10.1002/jcb.28840.
pmid: 31127650 |
[21] |
Jia YJ, Wang Q, Liang ML, et al. KPNA2 promotes angiogenesis by regulating STAT3 phosphorylation[J]. J Transl Med, 2022, 20(1): 627. DOI: 10.1186/s12967-022-03841-6.
pmid: 36578083 |
[22] |
Cai YC, Fu Y, Liu CC, et al. Stathmin 1 is a biomarker for diagnosis of microvascular invasion to predict prognosis of early hepatocellular carcinoma[J]. Cell Death Dis, 2022, 13(2): 176. DOI: 10.1038/s41419-022-04625-y.
pmid: 35210426 |
[23] |
Drucker E, Holzer K, Pusch S, et al. Karyopherin α2-dependent import of E2F1 and TFDP1 maintains protumorigenic stathmin expression in liver cancer[J]. Cell Commun Signal, 2019, 17(1): 159. DOI: 10.1186/s12964-019-0456-x.
pmid: 31783876 |
[24] | Wang WJ, Miyamoto Y, Chen BB, et al. Karyopherin α deficiency contributes to human preimplantation embryo arrest[J]. J Clin Invest, 2023, 133(2): e159951. DOI: 10.1172/JCI159951. |
[25] | Radhakrishnan K, Park SJ, Kim SW, et al. Karyopherin α-2 mediates MDC1 nuclear import through a functional nuclear localization signal in the tBRCT domain of MDC1[J]. Int J Mol Sci, 2020, 21(7): 2650. DOI: 10.3390/ijms21072650. |
[26] | Hu B, Qu C, Qi WJ, et al. Development and verification of the glycolysis-associated and immune-related prognosis signature for hepatocellular carcinoma[J]. Front Genet, 2022, 13: 955673. DOI: 10.3389/fgene.2022.955673. |
[27] |
Brownlee C, Heald R. Importin α partitioning to the plasma membrane regulates intracellular scaling[J]. Cell, 2019, 176(4): 805-815.e8. DOI: 10.1016/j.cell.2018.12.001.
pmid: 30639102 |
[28] | Ding F, Li JP, Zhang Y, et al. Identifying a novel endoplasmic reticulum-related prognostic model for hepatocellular carcinomas[J]. Oxid Med Cell Longev, 2022, 2022: 8248355. DOI: 10.1155/2022/8248355. |
[29] |
Pan Y, Zhang YR, Lu ZM, et al. The role of KPNA2 as a monotonically changing differentially expressed gene in the diagnosis, risk stratification, and chemotherapy sensitivity of chronic hepatitis B-liver cirrhosis-hepatocellular carcinoma[J]. J Cancer Res Clin Oncol, 2023, 149(15): 13753-13771. DOI: 10.1007/s00432-023-05213-z.
pmid: 37526663 |
[30] |
Xia JG, Wu C, Tang YH, et al. CircMYH9 increases KPNA2 mRNA stability to promote hepatocellular carcinoma progression in an EIF4A3-dependent manner[J]. Am J Cancer Res, 2022, 12(9): 4361-4372. DOI:.
pmid: 36225644 |
[31] | Lin CZ, Ou RW, Hu YH. Lentiviral-mediated microRNA-26b up-regulation inhibits proliferation and migration of hepatocellular carcinoma cells[J]. Kaohsiung J Med Sci, 2018, 34(10): 547-555. DOI: 10.1016/j.kjms.2018.05.003. |
[32] |
Zan Y, Wang BF, Liang L, et al. MicroRNA-139 inhibits hepatocellular carcinoma cell growth through down-regulating karyopherin alpha 2[J]. J Exp Clin Cancer Res, 2019, 38(1): 182. DOI: 10.1186/s13046-019-1175-2.
pmid: 31046781 |
[33] | Shi CL, Sun L, Liu SZ, et al. Overexpression of karyopherin subunit alpha 2 (KPNA2) predicts unfavorable prognosis and promotes bladder cancer tumorigenicity via the P53 pathway[J]. Med Sci Monit, 2020, 26: e921087. DOI: 10.12659/MSM.921087. |
[34] | Sun Y, Li W, Li X, et al. Oncogenic role of karyopherin α2 (KPNA2) in human tumors: a pan-cancer analysis[J]. Comput Biol Med, 2021, 139: 104955. DOI: 10.1016/j.compbiomed.2021.104955. |
[35] | Chen PF, Li QH, Zeng LR, et al. A 4-gene prognostic signature predicting survival in hepatocellular carcinoma[J]. J Cell Biochem, 2019, 120(6): 9117-9124. DOI: 10.1002/jcb.28187. |
[36] |
Zhang Q, Jin XY, Shi WB, et al. A long non-coding RNA LINC00461-dependent mechanism underlying breast cancer invasion and migration via the miR-144-3p/KPNA2 axis[J]. Cancer Cell Int, 2020, 20: 137. DOI: 10.1186/s12935-020-01221-y.
pmid: 32355466 |
[37] | Zhao Q, Zhang Y, Shao SC, et al. Identification of hub genes and biological pathways in hepatocellular carcinoma by integrated bioinformatics analysis[J]. PeerJ, 2021, 9: e10594. DOI: 10.7717/peerj.10594. |
[38] | Lai WW, Li DF, Ge Q, et al. A five-LLPS gene risk score prognostic signature predicts survival in hepatocellular carcinoma[J]. Int J Genomics, 2023, 2023: 7299276. DOI: 10.1155/2023/7299276. |
[1] | Qian Xiaotao, Shi Ziyi, Hu Ge, Wu Xiaowei. Efficacy of consolidation chemotherapy after radical radiotherapy and chemotherapy for stage Ⅲ-ⅣA esophageal squamous cell carcinoma: a real-world clinical study [J]. Journal of International Oncology, 2024, 51(6): 326-331. |
[2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[3] | Chen Hongjian, Zhang Suqing. Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients [J]. Journal of International Oncology, 2024, 51(6): 344-349. |
[4] | Zhang Baihong, Yue Hongyun. Advances in anti-tumor drugs with new mechanisms of action [J]. Journal of International Oncology, 2024, 51(6): 354-358. |
[5] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[6] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[7] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[8] | Fan Zhipeng, Yu Jing, Hu Jing, Liao Zhengkai, Xu Yu, Ouyang Wen, Xie Conghua. Predictive value of changes in inflammatory markers for prognosis in patients with advanced non-small cell lung cancer treated with the first-line immunotherapy plus chemotherapy [J]. Journal of International Oncology, 2024, 51(5): 257-266. |
[9] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. |
[10] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi. Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer [J]. Journal of International Oncology, 2024, 51(5): 286-291. |
[11] | Wang Peixin, Zhao Jun, Xu Shihong, Jiang Zhaoyang, Wang Xiaoqiang, Yang Hongjuan. Progress of ferroptosis-related mechanisms in osteosarcoma [J]. Journal of International Oncology, 2024, 51(5): 308-311. |
[12] | Liu Pingping, He Xuefang, Zhang Yi, Yang Xu, Zhang Shanshan, Ji Yifei. Risk factors of postoperative recurrence in patients with primary brain glioma and prediction model construction [J]. Journal of International Oncology, 2024, 51(4): 193-197. |
[13] | Wan Fang, Yang Gang, Li Rui, Wan Qijing. Expression levels and clinical significance of serum miR-497 and miR-383 in patients with esophageal cancer [J]. Journal of International Oncology, 2024, 51(4): 204-209. |
[14] | Yang Hao, Shi Guidong, Zhang Chengcheng, Zhang Yue, Zhang Liwen, Fu Maoyong. Comparison of efficacy and safety between sintilimab and tislelizumab in neoadjuvant therapy for advanced esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2024, 51(4): 210-216. |
[15] | Yao Yixin, Shen Yulin. Predictive value of serum SOCS3 and TXNIP levels for the prognosis of patients with hepatocellular carcinoma treated with TACE [J]. Journal of International Oncology, 2024, 51(4): 217-222. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||