Journal of International Oncology ›› 2021, Vol. 48 ›› Issue (1): 61-64.doi: 10.3760/cma.j.cn371439-20200527-00012
Received:
2020-05-27
Revised:
2020-08-29
Online:
2021-01-08
Published:
2021-01-21
Contact:
Cao Lili
E-mail:cll@sdu.edu.cn
Supported by:
Ding Xuchao, Cao Lili. Common active targeting nano drug delivery systems for cervical cancer[J]. Journal of International Oncology, 2021, 48(1): 61-64.
[1] | 李雷, 吴鸣, 杨佳欣, 等. 卵巢上皮性癌和子宫颈癌患者铂类药物超敏反应的临床分析[J]. 中华妇产科杂志, 2016,51(11):825-831. DOI: 10.3760/cma.j.issn.0529-567X.2016.11.005. |
[2] |
Parveen S, Misra R, Sahoo SK. Nanoparticles: a boon to drug deli-very, therapeutics, diagnostics and imaging[J]. Nanomedicine, 2012,8(2):147-166. DOI: 10.1016/j.nano.2011.05.016.
doi: 10.1016/j.nano.2011.05.016 pmid: 21703993 |
[3] |
Dockery L, Daniel MC. Dendronized systems for the delivery of chemotherapeutics[J]. Adv Cancer Res, 2018,139:85-120. DOI: 10.1016/bs.acr.2018.04.003.
doi: 10.1016/bs.acr.2018.04.003 pmid: 29941108 |
[4] |
Zhang R, Liu Q, Liao Q, et al. CD59: a promising target for tumor immunotherapy[J]. Future Oncol, 2018,14(8):781-791. DOI: 10.2217/fon-2017-0498.
pmid: 29521526 |
[5] | 高美华, 王冰, 王丽娜, 等. CD59基因突变与肿瘤免疫逃逸信号转导的相关性研究[C]. 第九届全国免疫学学术大会论文集, 2014. |
[6] |
Liu Q, Huang Y, Zhang R, et al. Medical application of spirulina platensis derived C-phycocyanin[J]. Evid Based Complement Alternat Med, 2016,2016:7803846. DOI: 10.1155/2016/7803846.
doi: 10.1155/2016/7803846 pmid: 27293463 |
[7] |
Yang P, Li B, Yin QF, et al. Carboxymethyl chitosan nanoparticles coupled with CD59-specific ligand peptide for targeted delivery of C-phycocyanin to HeLa cells[J]. Tumour Biol, 2017,39(3):1010428317692267. DOI: 10.1177/1010428317692267.
doi: 10.1177/1010428317692267 pmid: 28347253 |
[8] |
Jiang L, Wang Y, Zhu F, et al. Molecular mechanism of anti-cancer activity of the nano-drug C-PC/CMC-CD59sp NPs in cervical cancer[J]. J Cancer, 2019,10(1):92-104. DOI: 10.7150/jca.27462.
doi: 10.7150/jca.27462 pmid: 30662529 |
[9] |
Talekar M, Kendall J, Denny W, et al. Targeting of nanoparticles in cancer: drug delivery and diagnostics[J]. Anticancer Drugs, 2011,22(10):949-962. DOI: 10.1097/CAD.0b013e32834a4554.
pmid: 21970851 |
[10] |
Xu L, Bai Q, Zhang X, et al. Folate-mediated chemotherapy and diagnostics: an updated review and outlook[J]. J Control Release, 2017,252:73-82. DOI: 10.1016/j.jconrel.2017.02.023.
pmid: 28235591 |
[11] |
Wang X, Li D, Ghali L, et al. Therapeutic potential of delivering arsenic trioxide into HPV-infected cervical cancer cells using liposomal nanotechnology[J]. Nanoscale Res Lett, 2016,11(1):94. DOI: 10.1186/s11671-016-1307-y.
pmid: 26887578 |
[12] |
Pattni BS, Chupin VV, Torchilin VP. New developments in liposo-mal drug delivery[J]. Chem Rev, 2015,115(19):10938-10966. DOI: 10.1021/acs.chemrev.5b00046.
doi: 10.1021/acs.chemrev.5b00046 pmid: 26010257 |
[13] |
Akhtar A, Ghali L, Wang SX, et al. Optimisation of folate-mediated liposomal encapsulated arsenic trioxide for treating HPV-positive cervical cancer cells in vitro[J]. Int J Mol Sci, 2019,20(9):2156. DOI: 10.3390/ijms20092156.
doi: 10.3390/ijms20092156 |
[14] |
Ji J, Zuo P, Wang YL. Enhanced antiproliferative effect of carboplatin in cervical cancer cells utilizing folate-grafted polymeric nanoparticles[J]. Nanoscale Res Lett, 2015,10(1):453. DOI: 10.1186/s11671-015-1162-2.
doi: 10.1186/s11671-015-1162-2 pmid: 26608536 |
[15] |
You L, Liu X, Fang Z, et al. Synjournal of multifunctional Fe3O4@PLGA-PEG nano-niosomes as a targeting carrier for treatment of cervical cancer[J]. Mater Sci Eng C Mater Biol Appl, 2019,94:291-302. DOI: 10.1016/j.msec.2018.09.044.
doi: 10.1016/j.msec.2018.09.044 pmid: 30423711 |
[16] |
Zhang G, Liu F, Jia E, et al. Folate-modified, cisplatin-loaded li-pid carriers for cervical cancer chemotherapy[J]. Drug Deliv, 2016,23(4):1393-1397. DOI: 10.3109/10717544.2015.1054052.
pmid: 26165422 |
[17] |
Chen Y, Qu D, Fu R, et al. A Tf-modified tripterine-loaded coix seed oil microemulsion enhances anti-cervical cancer treatment[J]. Int J Nanomedicine, 2018,13:7275-7287. DOI: 10.2147/IJN.S182475.
pmid: 30510417 |
[18] |
Vithani K, Jannin V, Pouton CW, et al. Colloidal aspects of dispersion and digestion of self-dispersing lipid-based formulations for poorly water-soluble drugs[J]. Adv Drug Deliv Rev, 2019,142:16-34. DOI: 10.1016/j.addr.2019.01.008.
pmid: 30677448 |
[19] |
Yu J, Hsu CH, Huang CC, et al. Development of therapeutic Au-methylene blue nanoparticles for targeted photodynamic therapy of cervical cancer cells[J]. ACS Appl Mater Interfaces, 2015,7(1):432-441. DOI: 10.1021/am5064298.
doi: 10.1021/am5064298 pmid: 25494339 |
[20] |
Liu T, Liu Y, Bao X, et al. Overexpression of TROP2 predicts poor prognosis of patients with cervical cancer and promotes the proliferation and invasion of cervical cancer cells by regulating ERK signaling pathway[J]. PLoS One, 2013,8(9):e75864. DOI: 10.1371/journal.pone.0075864.
doi: 10.1371/journal.pone.0075864 pmid: 24086649 |
[21] |
Grabowska-Jadach I, Kalinowska D, Drozd M, et al. Synjournal, characterization and application of plasmonic hollow gold nanoshells in a photothermal therapy—new particles for theranostics[J]. Biomed Pharmacother, 2019,111:1147-1155. DOI: 10.1016/j.biopha.2019.01.037.
doi: 10.1016/j.biopha.2019.01.037 pmid: 30841428 |
[22] |
Liu T, Tian J, Chen Z, et al. Anti-TROP2 conjugated hollow gold nanospheres as a novel nanostructure for targeted photothermal destruction of cervical cancer cells[J]. Nanotechnology, 2014,25(34):345103. DOI: 10.1088/0957-4484/25/34/345103.
doi: 10.1088/0957-4484/25/34/345103 pmid: 25102337 |
[23] |
Akbarzadeh Khiavi M, Safary A, Barar J, et al. Multifunctional nanomedicines for targeting epidermal growth factor receptor in colo-rectal cancer[J]. Cell Mol Life Sci, 2020,77(6):997-1019. DOI: 10.1007/s00018-019-03305-z.
pmid: 31563999 |
[24] |
Zhou G, Wilson G, Hebbard L, et al. Aptamers: a promising che-mical antibody for cancer therapy[J]. Oncotarget, 2016,7(12):13446-13463. DOI: 10.18632/oncotarget.7178.
doi: 10.18632/oncotarget.7178 pmid: 26863567 |
[25] |
Chen Y, Wang J, Wang J, et al. Aptamer functionalized cisplatin-albumin nanoparticles for targeted delivery to epidermal growth factor receptor positive cervical cancer[J]. J Biomed Nanotechnol, 2016,12(4):656-666. DOI: 10.1166/jbn.2016.2203.
doi: 10.1166/jbn.2016.2203 pmid: 27301192 |
[26] |
Maiti S, Paira P. Biotin conjugated organic molecules and proteins for cancer therapy: a review[J]. Eur J Med Chem, 2018,145:206-223. DOI: 10.1016/j.ejmech.2018.01.001.
doi: 10.1016/j.ejmech.2018.01.001 pmid: 29324341 |
[27] |
Wang F, Ma J, Wang KS, et al. Blockade of TNF-α-induced NF-κB signaling pathway and anti-cancer therapeutic response of dihydrotanshinone Ⅰ[J]. Int Immunopharmacol, 2015,28(1):764-772. DOI: 10.1016/j.intimp.2015.08.003.
doi: 10.1016/j.intimp.2015.08.003 pmid: 26283590 |
[28] |
Cai Y, Zhang W, Chen Z, et al. Recent insights into the biological activities and drug delivery systems of tanshinones[J]. Int J Nanomedicine, 2016,11:121-130. DOI: 10.2147/IJN.S84035.
pmid: 26792989 |
[29] |
Luo J, Meng X, Su J, et al. Biotin-modified polylactic- co-glycolic acid nanoparticles with improved antiproliferative activity of 15,16-dihydrotanshinone Ⅰ in human cervical cancer cells[J]. J Agric Food Chem, 2018,66(35):9219-9230. DOI: 10.1021/acs.jafc.8b02698.
doi: 10.1021/acs.jafc.8b02698 pmid: 30102527 |
[30] |
Vannini A, Leoni V, Barboni C, et al. αvβ3 -integrin regulates PD-L1 expression and is involved in cancer immune evasion[J]. Proc Natl Acad Sci U S A, 2019,116(40):20141-20150. DOI: 10.1073/pnas.1901931116.
pmid: 31527243 |
[31] |
Rohrbeck A, Holtje M, Adolf A, et al. The Rho ADP-ribosylating C3 exoenzyme binds cells via an Arg-Gly-Asp motif[J]. J Biol Chem, 2017,292(43):17668-17680. DOI: 10.1074/jbc.M117.798231.
pmid: 28882889 |
[32] |
Yi Y, Kim HJ, Mi P, et al. Targeted systemic delivery of siRNA to cervical cancer model using cyclic RGD-installed unimer polyion complex-assembled gold nanoparticles[J]. J Control Release, 2016,244(Pt B):247-256. DOI: 10.1016/j.jconrel.2016.08.041.
doi: 10.1016/j.jconrel.2016.08.041 pmid: 27590214 |
[1] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi. Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer [J]. Journal of International Oncology, 2024, 51(5): 286-291. |
[2] | Zhang Lu, Jiang Hua, Lin Zhou, Ma Chenying, Xu Xiaoting, Wang Lili, Zhou Juying. Analysis of curative effect and prognosis of immune checkpoint inhibitor in the treatment of recurrent and metastatic cervical cancer [J]. Journal of International Oncology, 2023, 50(8): 475-483. |
[3] | Lyu Lu, Sun Pengfei. Gut flora and cervical cancer [J]. Journal of International Oncology, 2023, 50(6): 373-376. |
[4] | Wang Yixin, Cao Meng, Wang Yan. Application progress of domestic carbon nanoparticles suspension in sentinel lymph node biopsy for malignant tumors [J]. Journal of International Oncology, 2023, 50(1): 22-27. |
[5] | Ma Xueyan, Lu Lili, Sun Pengfei. Advances in the immune microenvironment in cervical cancer [J]. Journal of International Oncology, 2023, 50(1): 47-50. |
[6] | Zhang Lu, Zhou Juying, Ma Chenying, Lin Zhou. Advances in immunotherapy for recurrent and metastatic cervical cancer [J]. Journal of International Oncology, 2022, 49(9): 517-520. |
[7] | Shi Yingxia, Hu Lijun, Yu Jingping. Application of immune checkpoint inhibitors in the treatment of recurrent or metastatic cervical cancer [J]. Journal of International Oncology, 2022, 49(9): 568-571. |
[8] | Peng Chen, Xie Yintong, Zhang Xin, Xie Peng. Research progress of maintenance therapy for cervical cancer [J]. Journal of International Oncology, 2022, 49(7): 430-435. |
[9] | Yuan Chenyang, Zhou Juying. Research progress on prognostic factors of cervical cancer [J]. Journal of International Oncology, 2022, 49(5): 307-313. |
[10] | Wang Yue, Wu Qiong, Xu Yuan, Gong Wei, Xu Xiaoting. Screening and treatment progression of elderly cervical cancer [J]. Journal of International Oncology, 2022, 49(12): 754-758. |
[11] | Ma Xiuzhen, Lu Yan, Zhao Bingbing, Qiu Hongcong, Xu Xun, Wei Min. Effects of total flavonoids from Baeckea frutescens on the migration, invasion and apoptosis of cervical cancer SiHa cells [J]. Journal of International Oncology, 2021, 48(4): 206-211. |
[12] | Yu Mingyue, Chen Zhengzheng, Zhao Xuxu, Ren Pingping, Zhang Ying, Ge Li, Zhu Meiling, Zhao Weidong. Factors related to postoperative adjuvant therapy of locally advanced cervical cancer and building of a nomogram prediction model [J]. Journal of International Oncology, 2021, 48(1): 35-40. |
[13] | Shu Hang, Xu Zhonghua, Zhu Haochen, Yang Yahui, Lyu Yin. Research progress of radiosensitivity in cervical cancer [J]. Journal of International Oncology, 2020, 47(8): 496-500. |
[14] | Song Mingze, Cheng Yiming, Li Gang, Wang Zhenming, Li Shirong. Value of P16/Ki-67 double staining detection in screening cervical cancer and precancerous lesions [J]. Journal of International Oncology, 2020, 47(11): 675-681. |
[15] | Li Ang, Wei Fang. Current status and future challenges of HPV preventive vaccine of cervical cancer [J]. Journal of International Oncology, 2019, 46(5): 307-310. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||