Journal of International Oncology ›› 2020, Vol. 47 ›› Issue (8): 496-500.doi: 10.3760/cma.j.cn371439-20191120-00064
• Reviews • Previous Articles Next Articles
Shu Hang1, Xu Zhonghua1, Zhu Haochen2, Yang Yahui2, Lyu Yin1()
Received:
2019-11-20
Revised:
2020-02-27
Online:
2020-08-08
Published:
2020-10-22
Contact:
Lyu Yin
E-mail:lvyin406@163.com
Supported by:
Shu Hang, Xu Zhonghua, Zhu Haochen, Yang Yahui, Lyu Yin. Research progress of radiosensitivity in cervical cancer[J]. Journal of International Oncology, 2020, 47(8): 496-500.
[1] | 郑荣寿, 孙可欣, 张思维, 等. 2015年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2015,41(1):19-28. DOI: 10.3760/cma.j.issn.0253-3766.2019.01.008. |
[2] |
Liontos M, Kyriazoglou A, Dimitriadis I, et al. Systemic therapy in cervical cancer: 30 years in review[J]. Crit Rev Oncol Hematol, 2019,137:9-17. DOI: 10.1016/j.critrevonc.2019.02.009.
doi: 10.1016/j.critrevonc.2019.02.009 pmid: 31014518 |
[3] |
Li X, Fang F, Gao Y, et al. ROS induced by killerred targeting mitochondria (mtKR) enhances apoptosis caused by radiation via Cyt c/Caspase-3 pathway[J]. Oxid Med Cell Longev, 2019,2019:4528616. DOI: 10.1155/2019/4528616.
pmid: 30984335 |
[4] |
Noordhuis MG, Eijsink JJ, Ten Hoor KA, et al. Expression of epidermal growth factor receptor (EGFR) and activated EGFR predict poor response to (chemo)radiation and survival in cervical cancer[J]. Clin Cancer Res, 2009,15(23):7389-7397. DOI: 10.1158/1078-0432.CCR-09-1149.
doi: 10.1158/1078-0432.CCR-09-1149 pmid: 19920104 |
[5] |
Wei H, Zhu Z, Lu L. Inhibition of EGFR nuclear shuttling decreases irradiation resistance in HeLa cells[J]. Folia Histochem Cytobiol, 2017,55(2):43-51. DOI: 10.5603/FHC.a2017.0007.
doi: 10.5603/FHC.a2017.0007 pmid: 28518211 |
[6] |
De Sanjosé S, Brotons M, Pavón MA. The natural history of human papillomavirus infection[J]. Best Pract Res Clin Obstet Gynaecol, 2018,47:2-13. DOI: 10.1016/j.bpobgyn.2017.08.015.
doi: 10.1016/j.bpobgyn.2017.08.015 pmid: 28964706 |
[7] |
Su X, Chen WJ, Xiao SW, et al. Effect and safety of recombinant adenovirus-p53 transfer combined with radiotherapy on long-term survival of locally advanced cervical cancer[J]. Hum Gene Ther, 2016,27(12):1008-1014. DOI: 10.1089/hum.2016.043.
pmid: 27575731 |
[8] |
Ge TT, Yang M, Chen Z, et al. UHRF1 gene silencing inhibits cell proliferation and promotes cell apoptosis in human cervical squamous cell carcinoma CaSki cells[J]. J Ovarian Res, 2016,9(1):42. DOI: 10.1186/s13048-016-0253-8.
doi: 10.1186/s13048-016-0253-8 pmid: 27431502 |
[9] |
Zhang Q, Qiao L, Wang X, et al. UHRF1 epigenetically down-regulates UbcH8 to inhibit apoptosis in cervical cancer cells[J]. Cell Cycle, 2018,17(3):300-308. DOI: 10.1080/15384101.2017.1403686.
doi: 10.1080/15384101.2017.1403686 pmid: 29157076 |
[10] |
Yu XP, Wu YM, Liu Y, et al. IER5 is involved in DNA double-strand breaks repair in association with PAPR1 in Hela cells[J]. Int J Med Sci, 2017,14(12):1292-1300. DOI: 10.7150/ijms.21510.
doi: 10.7150/ijms.21510 pmid: 29104487 |
[11] |
Liu Y, Tian M, Zhao H, et al. IER5 as a promising predictive marker promotes irradiation-induced apoptosis in cervical cancer tissues from patients undergoing chemoradiotherapy[J]. Oncotarget, 2017,8(22):36438-36448. DOI: 10.18632/oncotarget.16857.
doi: 10.18632/oncotarget.16857 pmid: 28430589 |
[12] |
Shi HM, Ding KK, Zhou PK, et al. Radiation-induced expression of IER5 is dose-dependent and not associated with the clinical outcomes of radiotherapy in cervical cancer[J]. Oncol Lett, 2016,11(2):1309-1314. DOI: 10.3892/ol.2016.4086.
doi: 10.3892/ol.2016.4086 pmid: 26893736 |
[13] |
Prabakaran DS, Muthusami S, Sivaraman T, et al. Silencing of FTS increases radiosensitivity by blocking radiation-induced Notch1 activation and spheroid formation in cervical cancer cells[J]. Int J Biol Macromol, 2019,126:1318-1325. DOI: 10.1016/j.ijbiomac.2018.09.114.
pmid: 30244128 |
[14] |
Muthusami S, Prabakaran DS, Yu JR, et al. FTS is responsible for radiation-induced nuclear phosphorylation of EGFR and repair of DNA damage in cervical cancer cells[J]. J Cancer Res Clin Oncol, 2015,141(2):203-210. DOI: 10.1007/s00432-014-1802-4.
doi: 10.1007/s00432-014-1802-4 pmid: 25151576 |
[15] |
Ye C, Sun NX, Ma Y, et al. MicroRNA-145 contributes to enhancing radiosensitivity of cervical cancer cells[J]. FEBS Lett, 2015,589(6):702-709. DOI: 10.1016/j.febslet.2015.01.037.
doi: 10.1016/j.febslet.2015.01.037 pmid: 25666710 |
[16] |
Lu H, Jin PY, Tang Y, et al. microRNA-136 inhibits proliferation and promotes apoptosis and radiosensitivity of cervical carcinoma through the NF-κB pathway by targeting E2F1[J]. Life Sci, 2018,199:167-178. DOI: 10.1016/j.lfs.2018.02.016.
doi: 10.1016/j.lfs.2018.02.016 pmid: 29452167 |
[17] |
Sun H, Fan G, Deng C, et al. miR-4429 sensitized cervical cancer cells to irradiation by targeting RAD51[J]. J Cell Physiol, 2020,235(1):185-193. DOI: 10.1002/jcp.28957.
doi: 10.1002/jcp.28957 pmid: 31190335 |
[18] |
Zhao H, Zheng GH, Li GC, et al. Long noncoding RNA LINC00958 regulates cell sensitivity to radiotherapy through RRM2 by binding to microRNA-5095 in cervical cancer[J]. J Cell Physiol, 2019,234(12):23349-23359. DOI: 10.1002/jcp.28902.
doi: 10.1002/jcp.28902 pmid: 31169309 |
[19] |
Dellas K, Bache M, Pigorsch SU, et al. Prognostic impact of HIF-1alpha expression in patients with definitive radiotherapy for cervical cancer[J]. Strahlenther Onkol, 2008,184(3):169-174. DOI: 10.1007/s00066-008-1764-z.
doi: 10.1007/s00066-008-1764-z |
[20] |
Li N, Meng DD, Gao L, et al. Overexpression of HOTAIR leads to radioresistance of human cervical cancer via promoting HIF-1α expression[J]. Radiat Oncol, 2018,13(1):210. DOI: 10.1186/s13014-018-1153-4.
doi: 10.1186/s13014-018-1153-4 pmid: 30355300 |
[21] |
Huang XQ, Chen X, Xie XX, et al. Co-expression of CD147 and GLUT-1 indicates radiation resistance and poor prognosis in cervical squamous cell carcinoma[J]. Int J Clin Exp Pathol, 2014,7(4):1651-1666.
pmid: 24817962 |
[22] |
Kanjanapan Y, Deb S, Young RJ, et al. Glut-1 expression in small cervical biopsies is prognostic in cervical cancers treated with chemoradiation[J]. Clin Transl Radiat Oncol, 2017,2:53-58. DOI: 10.1016/j.ctro.2017.01.003.
doi: 10.1016/j.ctro.2017.01.003 pmid: 29658001 |
[23] |
Shrivastava S, Mahantshetty U, Engineer R, et al. Cisplatin chemoradiotherapy vs radiotherapy in FIGO stage ⅢB squamous cell carcinoma of the uterine cervix: a randomized clinical trial[J]. JAMA Oncol, 2018,4(4):506-513. DOI: 10.1001/jamaoncol.2017.5179.
doi: 10.1001/jamaoncol.2017.5179 |
[24] |
Wang W, Hou X, Yan J, et al. Outcome and toxicity of radical radiotherapy or concurrent chemoradiotherapy for elderly cervical cancer women[J]. BMC Cancer, 2017,17(1):510. DOI: 10.1186/s12885-017-3503-2.
pmid: 28764676 |
[25] |
Fu ZZ, Li K, Peng Y, et al. Efficacy and toxicity of different concurrent chemoradiotherapy regimens in the treatment of advanced cervical cancer: a network meta-analysis[J]. Medicine (Baltimore), 2017,96(2):e5853. DOI: 10.1097/MD.0000000000005853.
doi: 10.1097/MD.0000000000005853 |
[26] |
Chen YF, Tang WB, Pan XX, et al. Safety and efficacy of nimotuzumab combined with chemoradiotherapy in Chinese patients with locally advanced cervical cancer[J]. Onco Targets Ther, 2017,10:4113-4119. DOI: 10.2147/OTT.S133756.
doi: 10.2147/OTT.S133756 pmid: 28860820 |
[27] |
Lu H, Wu Y, Liu X, et al. A prospective study on neoadjuvant chemoradiotherapy plus anti-EGFR monoclonal antibody followed by surgery for locally advanced cervical cancer[J]. Onco Targets Ther, 2018,11:3785-3792. DOI: 10.2147/OTT.S164071.
pmid: 29997439 |
[28] |
Yoshida K, Suzuki S, Sakata J, et al. The upregulated expression of vascular endothelial growth factor in surgically treated patients with recurrent/radioresistant cervical cancer of the uterus[J]. Oncol Lett, 2018,16(1):515-521. DOI: 10.3892/ol.2018.8610.
doi: 10.3892/ol.2018.8610 pmid: 29928441 |
[29] |
Mann M, Kumar S, Sharma A, et al. PARP-1 inhibitor modulate β-catenin signaling to enhance cisplatin sensitivity in cancer cervix[J]. Oncotarget, 2019,10(42):4262-4275. DOI: 10.18632/oncotarget.27008.
doi: 10.18632/oncotarget.27008 pmid: 31303961 |
[30] |
Luo J, Zhu W, Tang Y, et al. Artemisinin derivative artesunate induces radiosensitivity in cervical cancer cells in vitro and in vivo[J]. Radiat Oncol, 2014,9:84. DOI: 10.1186/1748-717X-9-84.
doi: 10.1186/1748-717X-9-84 pmid: 24666614 |
[31] |
Zhang D, Dong Y, Zhao Y, et al. Sinomenine hydrochloride sensitizes cervical cancer cells to ionizing radiation by impairing DNA damage response[J]. Oncol Rep, 2018,40(5):2886-2895. DOI: 10.3892/or.2018.6693.
pmid: 30226618 |
[1] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi. Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer [J]. Journal of International Oncology, 2024, 51(5): 286-291. |
[2] | Zhang Lu, Jiang Hua, Lin Zhou, Ma Chenying, Xu Xiaoting, Wang Lili, Zhou Juying. Analysis of curative effect and prognosis of immune checkpoint inhibitor in the treatment of recurrent and metastatic cervical cancer [J]. Journal of International Oncology, 2023, 50(8): 475-483. |
[3] | Lyu Lu, Sun Pengfei. Gut flora and cervical cancer [J]. Journal of International Oncology, 2023, 50(6): 373-376. |
[4] | Ma Xueyan, Lu Lili, Sun Pengfei. Advances in the immune microenvironment in cervical cancer [J]. Journal of International Oncology, 2023, 50(1): 47-50. |
[5] | Zhang Lu, Zhou Juying, Ma Chenying, Lin Zhou. Advances in immunotherapy for recurrent and metastatic cervical cancer [J]. Journal of International Oncology, 2022, 49(9): 517-520. |
[6] | Shi Yingxia, Hu Lijun, Yu Jingping. Application of immune checkpoint inhibitors in the treatment of recurrent or metastatic cervical cancer [J]. Journal of International Oncology, 2022, 49(9): 568-571. |
[7] | Peng Chen, Xie Yintong, Zhang Xin, Xie Peng. Research progress of maintenance therapy for cervical cancer [J]. Journal of International Oncology, 2022, 49(7): 430-435. |
[8] | Xiao Nan, Sun Pengfei. Research progress of oxidative stress in the sensitivity of chemoradiotherapy for gliomas [J]. Journal of International Oncology, 2022, 49(6): 357-361. |
[9] | Yuan Chenyang, Zhou Juying. Research progress on prognostic factors of cervical cancer [J]. Journal of International Oncology, 2022, 49(5): 307-313. |
[10] | Wang Yue, Wu Qiong, Xu Yuan, Gong Wei, Xu Xiaoting. Screening and treatment progression of elderly cervical cancer [J]. Journal of International Oncology, 2022, 49(12): 754-758. |
[11] | Ma Xiuzhen, Lu Yan, Zhao Bingbing, Qiu Hongcong, Xu Xun, Wei Min. Effects of total flavonoids from Baeckea frutescens on the migration, invasion and apoptosis of cervical cancer SiHa cells [J]. Journal of International Oncology, 2021, 48(4): 206-211. |
[12] | Yu Mingyue, Chen Zhengzheng, Zhao Xuxu, Ren Pingping, Zhang Ying, Ge Li, Zhu Meiling, Zhao Weidong. Factors related to postoperative adjuvant therapy of locally advanced cervical cancer and building of a nomogram prediction model [J]. Journal of International Oncology, 2021, 48(1): 35-40. |
[13] | Ding Xuchao, Cao Lili. Common active targeting nano drug delivery systems for cervical cancer [J]. Journal of International Oncology, 2021, 48(1): 61-64. |
[14] | Zhu Guomin, Pan Wei, Zhang Yufeng, Chen Hui. Predictive value of TRAF6 expression in the efficacy of radiotherapy for esophageal cancer [J]. Journal of International Oncology, 2020, 47(8): 462-466. |
[15] | Li Guanglie, Yan Ying. Radiosensitivity markers of non-small cell lung cancer [J]. Journal of International Oncology, 2020, 47(4): 236-239. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||