Journal of International Oncology ›› 2019, Vol. 46 ›› Issue (5): 289-294.doi: 10.3760/cma.j.issn.1673-422X.2019.05.008
Previous Articles Next Articles
Li Longlong, Hu Kongwang
Received:
2019-01-25
Online:
2019-05-08
Published:
2019-06-14
Contact:
Hu Kongwang
E-mail:hukw@sina.com
Supported by:
Anhui Provincial Quality Engineering Project of China (2016jxtd061,2017jyxm1073)
Li Longlong, Hu Kongwang. Lysine demethylase 6 and tumors[J]. Journal of International Oncology, 2019, 46(5): 289-294.
[1] Pedersen MT, Helin K. Histone demethylases in development and disease[J]. Trends Cell Biol, 2010, 20(11): 662-671. DOI: 10.1016/j.tcb.2010.08.011. [2]Martin C, Zhang Y. The diverse functions of histone lysine methylation[J]. Nat Rev Mol Cell Biol, 2005, 6(11): 838-849. DOI: 10.1038/ nrm1761. [3]Shi Y, Lan F, Matson C, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1[J]. Cell, 2004, 119(7): 941-953. DOI: 10.1016/j.cell.2004.12.012. [4]Ismail T, Lee HK, Kim C, et al. KDM1A microenvironment, its oncogenic potential, and therapeutic significance[J]. Epigenetics Chromatin, 2018, 11(1): 33. DOI: 10.1186/s1307201802033. [5]Walport LJ, Hopkinson RJ, Schofield CJ. Mechanisms of human histone and nucleic acid demethylases[J]. Curr Opin Chem Biol, 2012, 16(56): 525-534. DOI: 10.1016/j.cbpa.2012.09.015. [6]Markolovic S, Leissing TM, Chowdhury R, et al. Structure function relationships of human JmjC oxygenasesdemethylases versus hydroxylases[J]. Curr Opin Struct Biol, 2016, 41: 62-72. DOI: 10.1016/j.sbi.2016.05.013. [7]Hong S, Cho YW, Yu LR, et al. Identification of JmjC domaincontaining UTX and JMJD3 as histone H3 lysine 27 demethylases[J]. Proc Natl Acad Sci U S A, 2007, 104(47): 18439-18444. DOI: 10.1073/pnas.0707292104. [8] Walport LJ, Hopkinson RJ, Vollmar M, et al. Human UTY (KDM6C) is a malespecific Nmethyl lysyl demethylase[J]. J Biol Chem, 2014, 289(26): 18302-18313. DOI: 10.1074/jbc.M114.555052. [9]Shpargel KB, Starmer J, Yee D, et al. KDM6 demethylase independent loss of histone H3 lysine 27 trimethylation during early embryonic development[J]. PLoS Genet, 2014, 10(8): e1004507. DOI: 10.1371/journal.pgen.1004507. [10] Welstead GG, Creyghton MP, Bilodeau S, et al. Xlinked H3K27me3 demethylase Utx is required for embryonic development in a sexspecific manner[J]. Proc Natl Acad Sci U S A, 2012, 109(32): 13004-13009. DOI: 10.1073/pnas.1210787109. [11] Chung N, Bogliotti YS, Ding W, et al. Active H3K27me3 demethylation by KDM6B is required for normal development of bovine preimplantation embryos[J]. Epigenetics, 2017, 12(12): 1048-1056. DOI: 10.1080/15592294.2017.1403693. [12] Lee S, Lee JW, Lee SK. UTX, a histone H3lysine 27 demethylase, acts as a critical switch to activate the cardiac developmental program[J]. Dev Cell, 2012, 22(1): 25-37. DOI: 10.1016/j.devcel.2011.11.009. [13] Burgold T, Voituron N, Caganova M, et al. The H3K27 demethylase JMJD3 is required for maintenance of the embryonic respiratory neuronal network, neonatal breathing, and survival[J]. Cell Rep, 2012, 2(5): 1244-1258. DOI: 10.1016/j.celrep.2012.09.013. [14] Fagerberg L, Hallstrm BM, Oksvold P, et al. Analysis of the human tissuespecific expression by genomewide integration of transcriptomics and antibodybased proteomics[J]. Mol Cell Proteomics, 2014, 13(2): 397406. DOI: 10.1074/mcp.M113.035600. [15] Banka S, Lederer D, Benoit V, et al. Novel KDM6A (UTX) mutations and a clinical and molecular review of the Xlinked Kabuki syndrome (KS2)[J]. Clin Genet, 2015, 87(3): 252-258. DOI: 10.1111/cge.12363. [16] Burgold T, Spreafico F, De Santa F, et al. The histone H3 lysine 27-specific demethylase Jmjd3 is required for neural commitment[J]. PLoS One, 2008, 3(8): e3034. DOI: 10.1371/journal.pone.0003034. [17] Ezponda T, DupéréRicher D, Will CM, et al. UTX/KDM6A loss enhances the malignant phenotype of multiple myeloma and sensitizes cells to EZH2 inhibition[J]. Cell Rep, 2017, 21(3): 628640. DOI: 10.1016/j.celrep.2017.09.078. [18] Li SH, Lu HI, Huang WT, et al. The prognostic significance of histone demethylase UTX in esophageal squamous cell carcinoma[J]. Int J Mol Sci, 2018, 19(1): e297. DOI: 10.3390/ijms19010297. [19] Nickerson ML, Dancik GM, Im KM, et al. Concurrent alterations in TERT, KDM6A, and the BRCA pathway in bladder cancer[J]. Clin Cancer Res, 2014, 20(18): 4935-4948. DOI: 10.1158/1078-0432.CCR-14-0330. [20] Agger K, Cloos PA, Rudkjaer L, et al. The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A-ARF locus in response to oncogene- and stress-induced senescence[J]. Genes Dev, 2009, 23(10): 1171-1176. DOI: 10.1101/gad.510809. [21] Salminen A, Kaarniranta K, Hiltunen M, et al. Histone demethylase Jumonji D3 (JMJD3/KDM6B) at the nexus of epigenetic regulation of inflammation and the aging process[J]. J Mol Med (Berl), 2014, 92(10): 1035-1043. DOI: 10.1007/s00109-014-1182-x. [22] Yan Q, Sun L, Zhu Z, et al. Jmjd3mediated epigenetic regulation of inflammatory cytokine gene expression in serum amyloid A-stimulated macrophages[J]. Cell Signal, 2014, 26(9): 1783-1791. DOI: 10.1016/j.cellsig.2014.03.025. [23] Dutta A, Le Magnen C, Mitrofanova A, et al. Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation[J]. Science, 2016, 352(6293): 1576-1580. DOI: 10.1126/science.aad9512. [24] Kandoth C, McLellan MD, Vandin F, et al. Mutational landscape and significance across 12 major cancer types[J]. Nature, 2013, 502(7471): 333-339. DOI: 10.1038/nature12634. [25] Gao YB, Chen ZL, Li JG, et al. Genetic landscape of esophageal squamous cell carcinoma[J]. Nat Genet, 2014, 46(10): 1097-1102. DOI: 10.1038/ng.3076. [26] Du P, Huang P, Huang X, et al. Comprehensive genomic analysis of oesophageal squamous cell carcinoma reveals clinical relevance[J]. Sci Rep, 2017, 7(1): 15324. DOI: 10.1038/s41598-017-14909-5. [27] Zhou Z, Zhang HS, Liu Y, et al. Loss of TET1 facilitates DLD1 colon cancer cell migration via H3K27me3mediated downregulation of Ecadherin[J]. J Cell Physiol, 2018, 233(2): 1359-1369. DOI: 10.1002/jcp.26012. [28] Tokunaga R, Sakamoto Y, Nakagawa S, et al. The prognostic significance of histone lysine demethylase JMJD3/KDM6B in colorectal cancer[J]. Ann Surg Oncol, 2016, 23(2): 678-685. DOI: 10.1245/s10434-015-4879-3. [29] Pereira F, Barbáchano A, Silva J, et al. KDM6B/JMJD3 histone demethylase is induced by vitamin D and modulates its effects in colon cancer cells[J]. Hum Mol Genet, 2011, 20(23): 4655-4665. DOI: 10.1093/hmg/ddr399. [30] Waddell N, Pajic M, Patch AM, et al. Whole genomes redefine the mutational landscape of pancreatic cancer[J]. Nature, 2015, 518(7540): 495-501. DOI: 10.1038/nature14169. [31] Andricovich J, Perkail S, Kai Y, et al. Loss of KDM6A activates superenhancers to induce gender-specific squamous-like pancreatic cancer and confers sensitivity to BET inhibitors[J]. Cancer Cell, 2018, 33(3): 512-526. DOI: 10.1016/j.ccell.2018.02.003. [32] Watanabe S, Shimada S, Akiyama Y, et al. Loss of KDM6A characterizes a poor prognostic subtype of human pancreatic cancer and potentiates HDAC inhibitor lethality[J]. Int J Cancer, 2019, 45(1): 192-205. DOI: 10.1002/ijc.32072. [33] Yamamoto K, Tateishi K, Kudo Y, et al. Loss of histone demethylase KDM6B enhances aggressiveness of pancreatic cancer through downregulation of C/EBPα[J]. Carcinogenesis, 2014, 35(11): 2404-2414. DOI: 10.1093/carcin/bgu136. [34] Koschmieder S, Halmos B, Levantini E, et al. Dysregulation of the C/EBPalpha differentiation pathway in human cancer[J]. J Clin Oncol, 2009, 27(4): 619-628. DOI: 10.1200/JCO.2008.17.9812. [35] Lee SW, Park DY, Kim MY, et al. Synergistic triad epistasis of epigenetic H3K27me modifier genes, EZH2, KDM6A, and KDM6B, in gastric cancer susceptibility[J]. Gastric Cancer, 2019, 22(3): 640-644. DOI: 10.1007/s10120-018-0888-9. [36] Jiang Q, Song HJ, Liu Y, et al. KDM6A regulates cell proliferation, invasion and apoptosis by transcriptional inhibits p16(ink4a)[J]. Int J Clin Exp Med, 2017, 10(7): 10297-10305. [37] Zhang PP, Wang XL, Zhao W, et al. DNA methylationmediated repression of miR941 enhances lysine (K)specific demethylase 6B expression in hepatoma cells[J]. J Biol Chem, 2014, 289(35): 24724-24735. DOI: 10.1074/jbc.M114.567818. [38] Wang J, Liu L, Long Q, et al. Decreased expression of JMJD3 predicts poor prognosis of patients with clear cell renal cell carcinoma[J]. Oncol Lett, 2017, 14(2): 1550-1560. DOI: 10.3892/ol.2017.6362. [39] Ler LD, Ghosh S, Chai X, et al. Loss of tumor suppressor KDM6A amplifies PRC2regulated transcriptional repression in bladder cancer and can be targeted through inhibition of EZH2[J]. Sci Transl Med, 2017, 9(378): eaai8312. DOI: 10.1126/scitranslmed.aai8312. [40] Kaneko S, Li X. X chromosome protects against bladder cancer in females via a KDM6Adependent epigenetic mechanism[J]. Sci Adv, 2018, 4(6): eaar5598. DOI: 10.1126/sciadv.aar5598. [41] Fusco N, Geyer FC, De Filippo MR, et al. Genetic events in the progression of adenoid cystic carcinoma of the breast to high-grade triple-negative breast cancer[J]. Mod Pathol, 2016, 29(11): 1292-1305. DOI: 10.1038/modpathol.2016.134. [42] Choi HJ, Park JH, Park M, et al. UTX inhibits EMTinduced breast CSC properties by epigenetic repression of EMT genes in cooperation with LSD1 and HDAC1[J]. EMBO Rep, 2015, 16(10): 1288-1298. DOI: 10.15252/embr.201540244. [43] Kim JH, Sharma A, Dhar SS, et al. UTX and MLL4 coordinately regulate transcriptional programs for cell proliferation and invasiveness in breast cancer cells[J]. Cancer Res, 2014, 74(6): 1705-1717. DOI: 10.1158/0008-5472.CAN-13-1896. [44] Xie G, Liu X, Zhang Y, et al. UTX promotes hormonally responsive breast carcinogenesis through feedforward transcription regulation with estrogen receptor[J]. Oncogene, 2017, 36(39): 5497-5511. DOI: 10.1038/onc.2017.157. [45] Wang W, Lim KG, Feng M, et al. KDM6B counteracts EZH2mediated suppression of IGFBP5 to confer resistance to PI3K/AKT inhibitor treatment in breast cancer[J]. Mol Cancer Ther, 2018, 17(9): 1973-1983. DOI: 10.1158/1535-7163.MCT-17-0802. [46] Ntziachristos P, Tsirigos A, Welstead GG, et al. Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia[J]. Nature, 2014, 514(7523): 513-517. DOI: 10.1038/nature13605. [47] Tsuyama N, Asaka R, Dobashi A, et al. EpsteinBarr virusnegative extranodal "true" natural killercell lymphoma harbouring a KDM6A mutation[J]. Hematol Oncol, 2018, 36(1): 328-335. DOI: 10.1002/hon.2459. [48] Ohguchi H, Harada T, Sagawa M, et al. KDM6B modulates MAPK pathway mediating multiple myeloma cell growth and survival[J]. Leukemia, 2017, 31(12): 2661-2669. DOI: 10.1038/leu.2017.141. [49] Gozdecka M, Meduri E, Mazan M, et al. UTXmediated enhancer and chromatin remodeling suppresses myeloid leukemogenesis through noncatalytic inverse regulation of ETS and GATA programs[J]. Nat Genet, 2018, 50(6): 883-894. DOI: 10.1038/s41588-018-0114-z. [50] Wu Q, Tian Y, Zhang J, et al. In vivo CRISPR screening unveils histone demethylase UTX as an important epigenetic regulator in lung tumorigenesis[J]. Proc Natl Acad Sci U S A, 2018, 115(17): 39783986. DOI: 10.1073/pnas.1716589115. [51] Ma J, Wang N, Zhang Y, et al. KDM6B elicits cell apoptosis by promoting nuclear translocation of FOXO1 in non-small cell lung cancer[J]. Cell Physiol Biochem, 2015, 37(1): 201213. DOI: 10.1159/000430345. [52] Moody CA, Laimins LA. Human papillomavirus oncoproteins: pathways to transformation[J]. Nat Rev Cancer, 2010, 10(8): 550-560. DOI: 10.1038/nrc2886. [53] Munger K, Jones DL. Human papillomavirus carcinogenesis: an identity crisis in the retinoblastoma tumor suppressor pathway[J]. J Virol, 2015, 89(9): 4708-4711. DOI: 10.1128/JVI.03486-14. [54] Soto DR, Barton C, Munger K, et al. KDM6A addiction of cervical carcinoma cell lines is triggered by E7 and mediated by p21CIP1 suppression of replication stress[J]. PLoS Pathog, 2017, 13(10): e1006661. DOI: 10.1371/journal.ppat.1006661. [55] Roussel MF, Stripay JL. Epigenetic drivers in pediatric medulloblastoma[J]. Cerebellum, 2018, 17(1): 28-36. DOI: 10.1007/s12311-017-0899-9. [56] SherryLynes MM, Sengupta S, Kulkarni S, et al. Regulation of the JMJD3 (KDM6B) histone demethylase in glioblastoma stem cells by STAT3[J]. PLoS One, 2017, 12(4): e0174775. DOI: 10.1371/journal.pone.0174775. [57] Yang L, Zha Y, Ding J, et al. Histone demethylase KDM6B has an antitumorigenic function in neuroblastoma by promoting differentiation[J]. Oncogenesis, 2019, 8(1): 3. DOI: 10.1038/s41389-018-0112-0. [58] Panaccione A, Zhang Y, Mi Y, et al. Chromosomal abnormalities and molecular landscape of metastasizing mucinous salivary adenocarcinoma[J]. Oral Oncol, 2017, 66: 38-45. DOI: 10.1016/j.oraloncology.2016.12.011. [59] Moreira AL, Won HH, McMillan R, et al. Massively parallel sequencing identifies recurrent mutations in TP53 in thymic carcinoma associated with poor prognosis[J]. J Thorac Oncol, 2015, 10(2): 373-380. DOI: 10.1097/JTO.0000000000000397. [60] Cregan S, Breslin M, Roche G, et al. KDM6A and KDM6B: altered expression in malignant pleural mesothelioma[J]. Int J Oncol, 2017, 50(3): 1044-1052. DOI: 10.3892/ijo.2017.3870. |
[1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou. Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer [J]. Journal of International Oncology, 2024, 51(6): 321-325. |
[2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[3] | Yuan Jian, Huang Yanhua. Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer [J]. Journal of International Oncology, 2024, 51(6): 338-343. |
[4] | Chen Hongjian, Zhang Suqing. Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients [J]. Journal of International Oncology, 2024, 51(6): 344-349. |
[5] | Guo Zehao, Zhang Junwang. Role of PFDN and its subunits in tumorigenesis and tumor development [J]. Journal of International Oncology, 2024, 51(6): 350-353. |
[6] | Zhang Baihong, Yue Hongyun. Advances in anti-tumor drugs with new mechanisms of action [J]. Journal of International Oncology, 2024, 51(6): 354-358. |
[7] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[8] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[9] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[10] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[11] | Liu Jing, Liu Qin, Huang Mei. Prognostic model construction of lung infection in patients with chemoradiotherapy for esophageal cancer based on SMOTE algorithm [J]. Journal of International Oncology, 2024, 51(5): 267-273. |
[12] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. |
[13] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. |
[14] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi. Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer [J]. Journal of International Oncology, 2024, 51(5): 286-291. |
[15] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||