Journal of International Oncology ›› 2019, Vol. 46 ›› Issue (3): 170-173.doi: 10.3760/cma.j.issn.1673-422X.2019.03.008
Previous Articles Next Articles
Zhong Chenyi, Mao Yundong
Online:
2019-03-08
Published:
2019-05-17
Contact:
Mao Yundong
E-mail:drmaoyd@aliyun.com
Supported by:
National Natural Science Foundation of China (81671438)
Zhong Chenyi, Mao Yundong. Regulating effect of lncRNA on aerobic glycolysis in tumor cells[J]. Journal of International Oncology, 2019, 46(3): 170-173.
[1] SalcianoSilca A, LoboAlves SC, Almeida RC, et al. Besides pathology: long noncoding RNA in cell and tissue homeostasis[J]. Noncoding RNA, 2018, 4(1): pii: E3. DOI: 10.3390/ncrna4010003. [2] Kang W, Zheng Q, Lei J, et al. Prognostic value of long noncoding RNAs in patients with gastrointestinal cancer: a systematic review and metaanalysis[J]. Dis Markers, 2018, 2018: 5340894. DOI: 10.1155/2018/5340894. [3] Yu L, Chen X, Sun X, et al. The glycolytic switch in tumors: how many players are involved?[J]. J Cancer, 2017, 8(17): 34303440. DOI: 10.7150/jca.21125. [4] Hofmann P. Cancer and exercise: Warburg hypothesis, tumour metabolism and highintensity anaerobic exercise[J]. Sports (Basel), 2018, 6(1): pii: E10. DOI: 10.3390/sports6010010. [5] Zhao M, Fan J, Liu Y, et al. Oncogenic role of the TP53induced glycolysis and apoptosis regulator in nasopharyngeal carcinoma through NFκB pathway modulation[J]. Int J Oncol, 2016, 48(2): 756764. DOI: 10.3892/ijo.2015.3297. [6] Panisova E, Kery M, Kopacek J, et al. Enhanced metabolism as a common feature of cancer plasticity[J]. Neoplasma, 2016, 63(6): 836845. DOI: 10.4149/neo_2016_602. [7] Ye Y, He X, Lu F, et al. A lincRNAp21/miR181 family feedback loop regulates microglial activation during systemic LPS and MPTP induced neuroinflammation[J]. Cell Death Dis, 2018, 9(8): 803. DOI: 10.1038/s4141901808215. [8] Tang SS, Zheng BY, Xiong XD. LincRNAp21: implications in human diseases[J]. Int J Mol Sci, 2015, 16(8): 1873218740. DOI: 10.3390/ijms160818732. [9] Shen Y, Liu Y, Sun T, et al. LincRNAp21 knockdown enhances radiosensitivity of hypoxic tumor cells by reducing autophagy through HIF1/Akt/mTOR/P70S6K pathway[J]. Exp Cell Res, 2017, 358(2): 188198. DOI: 10.1016/j.yexcr.2017.06.016. [10] Peng F, Wang JH, Fan WJ, et al. Glycolysis gatekeeper PDK1 reprograms breast cancer stem cells under hypoxia[J]. Oncogene, 2018, 37(8): 1119. DOI: 10.1038/onc.2017.407. [11] Zhang S, Li Z, Zhang L, et al. MEF2activated long noncoding RNA PCGEM1 promotes cell proliferation in hormonerefractory prostate cancer through downregulation of miR148a[J]. Mol Med Rep, 2018, 18(1): 202208. DOI: 10.3892/mmr.2018.8977. [12] ArriagaCanon C, De La Rosa aVelázquez IA, GonzálezBarrios R, et al. The use of long noncoding RNAs as prognostic biomarkers and therapeutic targets in prostate cancer[J]. Oncotarget, 2018, 9(29): 2087220890. DOI: 10.18632/oncotarget.25038. [13] Aird J, Baird AM, Lim MCJ, et al. Carcinogenesis in prostate cancer: the role of long noncoding RNAs[J]. Noncoding RNA Res, 2018, 3(1): 2938. DOI: 10.1016/j.ncrna.2018.01.001. [14] Kim T, Croce CM. Long noncoding RNAs: undeciphered cellular codes encrypting keys of colorectal cancer pathogenesis[J]. Cancer Lett, 2018, 417: 8995. DOI: 10.1016/j.canlet.2017.12.033. [15] Szafron LM, Balcerak A, Grzybowska EA, et al. The putative oncogene, CRNDE, is a negative prognostic factor in ovarian cancer patients[J]. Oncotarget, 2015, 6(41): 4389743910. DOI: 10.18632/oncotarget.6016. [16] Esposti DD, HernandezVargas H, Voegele C, et al. Identification of novel long noncoding RNAs deregulated in hepatocellular carcinoma using RNAsequencing[J]. Oncotarget, 2016, 7(22): 3186231877. DOI: 10.18632/oncotarget.7364. [17] Kong Y, Hsieh CH, Alonso LC. ANRIL: a lncRNA at the CDKN2A/B locus with roles in cancer and metabolic disease[J]. Front Endocrinol (Lausanne), 2018, 9: 405. DOI: 10.3389/fendo.2018.00405. [18] Zou ZW, Ma C, Medoro L, et al. LncRNA ANRIL is upregulated in nasopharyngeal carcinoma and promotes the cancer progression via increasing proliferation, reprograming cell glucose metabolism and inducing sidepopulation stemlike cancer cells[J]. Oncotarget, 2016, 7(38): 6174161754. DOI: 10.18632/oncotarget.11437. [19] Lin A, Li C, Xing Z, et al. The LINKA lncRNA activates normoxic HIF1alpha signalling in triplenegative breast cancer[J]. Nat Cell Biol, 2016, 18(2): 213224. DOI: 10.1038/ncb3295. [20] Heneberg P. Redox regulation of hexokinases[J]. Antioxid Redox Signal, 2019, 30(3): 415442. DOI: 10.1089/ars.2017.7255. [21] Zhang Y, Liu Y, Xu X. Knockdown of LncRNAUCA1 suppresses chemoresistance of pediatric AML by inhibiting glycolysis through the microRNA125a/hexokinase 2 pathway[J]. J Cell Biochem, 2018, 119(7): 62966308. DOI: 10.1002/jcb.26899. [22] Ma J, Fan Y, Feng T, et al. HOTAIR regulates HK2 expression by binding endogenous miR125 and miR143 in oesophageal squamous cell carcinoma progression[J]. Oncotarget, 2017, 8(49): 8641086422. DOI: 10.18632/oncotarget.21195. [23] Song J, Wu X, Liu F, et al. Long noncoding RNA PVT1 promotes glycolysis and tumor progression by regulating miR497/HK2 axis in osteosarcoma[J]. Biochem Biophys Res Commun, 2017, 490(2): 217224. DOI: 10.1016/j.bbrc.2017.06.024. [24] Xiao ZD, Zhuang L, Gan B. Long noncoding RNAs in cancer metabolism[J]. Bioessays, 2016, 38(10): 991996. DOI: 10.1002/bies.201600110. [25] Fan C, Tang Y, Wang J, et al. Role of long noncoding RNAs in glucose metabolism in cancer[J]. Mol Cancer, 2017, 16(1): 130. DOI: 10.1186/s1294301706993. [26] Luo F, Liu X, Ling M, et al. The lncRNA MALAT1, acting through HIF1α stabilization, enhances arseniteinduced glycolysis in human hepatic L02 cells[J]. Biochim Biophys Acta, 2016, 1862(9): 16851695. DOI: 10.1016/j.bbadis.2016.06.004. [27] Zhang P, Cao L, Fan P, et al. LncRNAMIF, a cmycactivated long noncoding RNA, suppresses glycolysis by promoting FBXW7mediated cmyc degradation[J]. EMBO Rep, 2016, 17(8): 12041220. DOI: 10.15252/embr.201642067. [28] Xiao C, Wu C, Hu HZ. LncRNA UCA1 promotes epithelialmesenchymal transition (EMT) of breast cancer cells via enhancing Wnt/betacatenin signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2016, 20(13): 28192924. [29] Rrpaimoole R, Lee J, Haemmerle M, et al. Long noncoding RNA ceruloplasmin promotes cancer growth by altering glycolysis[J]. Cell Rep, 2015, 13(11): 23952402. DOI: 10.1016/j.celrep.2015.11.047. |
[1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou. Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer [J]. Journal of International Oncology, 2024, 51(6): 321-325. |
[2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[3] | Yuan Jian, Huang Yanhua. Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer [J]. Journal of International Oncology, 2024, 51(6): 338-343. |
[4] | Chen Hongjian, Zhang Suqing. Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients [J]. Journal of International Oncology, 2024, 51(6): 344-349. |
[5] | Guo Zehao, Zhang Junwang. Role of PFDN and its subunits in tumorigenesis and tumor development [J]. Journal of International Oncology, 2024, 51(6): 350-353. |
[6] | Zhang Baihong, Yue Hongyun. Advances in anti-tumor drugs with new mechanisms of action [J]. Journal of International Oncology, 2024, 51(6): 354-358. |
[7] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[8] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[9] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[10] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[11] | Liu Jing, Liu Qin, Huang Mei. Prognostic model construction of lung infection in patients with chemoradiotherapy for esophageal cancer based on SMOTE algorithm [J]. Journal of International Oncology, 2024, 51(5): 267-273. |
[12] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. |
[13] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. |
[14] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi. Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer [J]. Journal of International Oncology, 2024, 51(5): 286-291. |
[15] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||