[1] Cutruzzolà F, Giardina G, Marani M, et al. Glucose metabolism in the progression of
prostate cancer[J]. Front Physiol, 2017, 8: 97. DOI: 10.3389/fphys.2017.00097.
[2] Laukka T, Mariani CJ, Ihantola T, et al. Fumarate and succinate regulate expression
of hypoxiainducible genes via TET enzymes[J]. J Biol Chem, 2016, 291(8): 42564265.
DOI: 10.1074/jbc.M115.688762.
[3] Brose SA, Golovko SA, Golovko MY. Fatty acid biosynthesis inhibition increases
reduction potential in neuronal cells under hypoxia[J]. Front Neurosci, 2016, 10: 546.
DOI: 10.3389/fnins.2016.00546.
[4] Schwartz L, Seyfried T, Alfarouk KO, et al. Out of Warburg effect: an effective cancer
treatment targeting the tumor specific metabolism and dysregulated pH[J]. Semin Cancer
Biol, 2017, 43: 134138. DOI: 10.1016/j.semcancer.2017.01.005.
[5] Zhang H, Lu C, Fang M, et al. HIF1α activates hypoxiainduced PFKFB4 expression in
human bladder cancer cells[J]. Biochem Biophys Res Commun, 2016, 476(3): 146152. DOI:
10.1016/j.bbrc.2016.05.026.
[6] Dong C, Yuan T, Wu Y, et al. Loss of FBP1 by Snailmediated repression provides
metabolic advantages in basallike breast cancer[J]. Cancer Cell, 2013, 23(3): 316331.
DOI: 10.1016/j.ccr.2013.01.022.
[7] Li B, Qiu B, Lee DS, et al. Fructose1, 6bisphosphatase opposes renal carcinoma
progression[J]. Nature, 2014, 513(7517): 251255. DOI: 10.1038/nature13557.
[8] Chang CH, Qiu J, O′Sullivan D, et al. Metabolic competition in the tumor
microenvironment is a driver of cancer progression[J]. Cell, 2015, 162(6): 12291241.
DOI: 10.1016/j.cell.2015.08.016.
[9] Peng M, Yin N, Chhangawala S, et al. Aerobic glycolysis promotes T helper 1 cell
differentiation through an epigenetic mechanism[J]. Science, 2016, 354(6311): 481484.
DOI: 10.1126/science.aaf6284.
[10] Végran F, Boidot R, Michiels C, et al. Lactate influx through the endothelial cell
monocarboxylate transporter MCT1 supports an NFκB/IL8 pathway that drives tumor
angiogenesis[J]. Cancer Res, 2011, 71(7): 25502560. DOI:
10.1158/00085472.CAN102828.
[11] Michalek RD, Gerriets VA, Jacobs SR, et al. Cutting edge: distinct glycolytic and
lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell
subsets[J]. J Immunol, 2011, 186(6): 32993303. DOI: 10.4049/jimmunol.1003613.
[12] Araujo L, Khim P, Mkhikian H, et al. Glycolysis and glutaminolysis cooperatively
control T cell function by limiting metabolite supply to Nglycosylation[J]. Elife, 2017,
6. pii: e21330. DOI: 10.7554/eLife.21330.
[13] Végran F, Boidot R, Michiels C, et al. Lactate influx through the endothelial cell
monocarboxylate transporter MCT1 supports an NFκB/IL8 pathway that drives tumor
angiogenesis[J]. Cancer Res, 2011, 71(7): 25502260. DOI:
10.1158/00085472.CAN102828.
[14] Bandugula VR, N RP. 2DeoxyDglucose and ferulic acid modulates radiation
response signaling in nonsmall cell lung cancer cells[J]. Tumour Biol, 2013, 34(1): 251
259. DOI: 10.1007/s1327701205456.
[15] Kim SM, Yun MR, Hong YK, et al. Glycolysis inhibition sensitizes nonsmall cell lung
cancer with T790M mutation to irreversible EGFR inhibitors via translational suppression of
Mcl1 by AMPK activation[J]. Mol Cancer Ther, 2013, 12(10): 21452156. DOI: 10.1158/1535
7163.MCT121188.
[16] Kankotia S, Stacpoole PW. Dichloroacetate and cancer: new home for an orphan drug?[J
]. Biochim Biophys Acta, 2014, 1846(2): 617629. DOI: 10.1016/j.bbcan.2014.08.005.
[17] James MO, Jahn SC, Zhong G, et al. Therapeutic applications of dichloroacetate and
the role of glutathione transferase zeta1[J]. Pharmacol Ther, 2017, 170: 166180. DOI:
10.1016/j.pharmthera.2016.10.018.
[18] Tran Q, Lee H, Park J, et al. Targeting cancer metabolismrevisiting the Warburg
effects[J]. Toxicol Res, 2016, 32(3): 177193. DOI: 10.5487/TR.2016.32.3.177.
[19] Maurer GD, Brucker DP, Bhr O, et al. Differential utilization of ketone bodies by
neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy
[J]. BMC Cancer, 2011, 11(1): 315. DOI: 10.1186/1471240711315. |