
Journal of International Oncology ›› 2026, Vol. 53 ›› Issue (1): 38-46.doi: 10.3760/cma.j.cn371439-20250421-00005
• Original Article • Previous Articles Next Articles
Received:2025-04-21
Online:2026-01-08
Published:2026-01-13
Contact:
Cheng Chunlai
E-mail:yh1ph7cl@163.com
Supported by:Zhang Xiaoxi, Cheng Chunlai. Expression of ALDH6A1 in clear cell renal cell carcinoma and its impacts on proliferation, apoptosis, and invasion of renal cancer cells[J]. Journal of International Oncology, 2026, 53(1): 38-46.
"
| 临床病理特征 | 例数 | 阳性(n=23) | 阴性(n=47) | χ2值 | P值 |
|---|---|---|---|---|---|
| 性别 | |||||
| 男 | 42 | 12(52.17) | 30(63.83) | 0.87 | 0.350 |
| 女 | 28 | 11(47.83) | 17(36.17) | ||
| 年龄(岁) | |||||
| <55 | 32 | 10(43.48) | 22(46.81) | 0.07 | 0.793 |
| ≥55 | 38 | 13(56.52) | 25(53.19) | ||
| 肿瘤最大径(cm) | |||||
| <4 | 33 | 9(39.13) | 24(51.06) | 0.88 | 0.349 |
| ≥4 | 37 | 14(60.87) | 23(48.94) | ||
| 病理分级 | |||||
| G1~G2 | 36 | 16(69.57) | 20(42.55) | 4.51 | 0.034 |
| G3~G4 | 34 | 7(30.43) | 27(57.45) | ||
| 分化程度 | |||||
| 低、中分化 | 25 | 7(30.43) | 18(38.30) | 0.42 | 0.519 |
| 高分化 | 45 | 16(69.57) | 29(61.70) | ||
| TNM分期 | |||||
| Ⅰ~Ⅱ | 30 | 15(65.22) | 15(31.91) | 6.99 | 0.008 |
| Ⅲ~Ⅳ | 40 | 8(34.78) | 32(68.09) | ||
"
| 组别 | A值 | EdU阳性率(%) | 凋亡率(%) | G0/G1期(%) | S期(%) | G2/M期(%) |
|---|---|---|---|---|---|---|
| control组 | 0.65±0.06 | 48.34±5.21 | 2.15±0.43 | 22.46±3.56 | 31.25±3.78 | 46.29±5.15 |
| OE-NC组 | 0.63±0.05 | 49.56±5.65 | 2.32±0.55 | 23.16±3.72 | 32.89±3.61 | 43.95±5.63 |
| OE-ALDH6A1组 | 0.38±0.04ab | 27.34±3.28ab | 33.46±4.36ab | 37.82±5.42ab | 26.33±3.87ab | 35.85±4.21ab |
| F值 | 52.91 | 40.22 | 300.05 | 24.23 | 4.96 | 7.11 |
| P值 | <0.001 | <0.001 | <0.001 | <0.001 | 0.022 | 0.007 |
| [1] | Kowalewski A, Borowczak J, Maniewski M, et al. Targeting apoptosis in clear cell renal cell carcinoma[J]. Biomed Pharmacother, 2024, 175: 116805. DOI: 10.1016/j.biopha.2024.116805. |
| [2] | Meng L, Collier KA, Wang P, et al. Emerging immunotherapy approaches for advanced clear cell renal cell carcinoma[J]. Cells, 2023, 13(1): 34. DOI: 10.3390/cells13010034. |
| [3] | Wei Z, Ye Y, Liu C, et al. MIER2/PGC1A elicits sunitinib resistance via lipid metabolism in renal cell carcinoma[J]. J Adv Res, 2025, 70: 287-305. DOI: 10.1016/j.jare.2024.04.032. |
| [4] | Li Q, Zeng K, Chen Q, et al. Atractylenolide Ⅰ inhibits angiogenesis and reverses sunitinib resistance in clear cell renal cell carcinoma through ATP6V0D2-mediated autophagic degradation of EPAS1/HIF2α[J]. Autophagy, 2025, 21(3): 619-638. DOI: 10.1080/15548627.2024.2421699. |
| [5] | Di SC, Chen WJ, Yang W, et al. DEPDC1 as a metabolic target regulates glycolysis in renal cell carcinoma through AKT/mTOR/HIF1α pathway[J]. Cell Death Dis, 2024, 15(7): 533. DOI: 10. 1038/s41419-024-06913-1. |
| [6] | Lu J, Chen Z, Zhao H, et al. ABAT and ALDH6A1, regulated by transcription factor HNF4A, suppress tumorigenic capability in clear cell renal cell carcinoma[J]. J Transl Med, 2020, 18(1): 101. DOI: 10.1186/s12967-020-02268-1. |
| [7] |
Shin H, Cha HJ, Lee MJ, et al. Identification of ALDH6A1 as a potential molecular signature in hepatocellular carcinoma via quantitative profiling of the mitochondrial proteome[J]. J Proteome Res, 2020, 19(4): 1684-1695. DOI: 10.1021/acs.jproteome.9b00846.
pmid: 31985234 |
| [8] | Li X, Wang N, Wu Y, et al. ALDH6A1 weakens the progression of colon cancer via modulating the RAS/RAF/MEK/ERK pathway in cancer cell lines[J]. Gene, 2022, 842: 146757. DOI: 10.1016/j.gene.2022.146757. |
| [9] | Guo X, Sun Z, Jiang S, et al. Identification and validation of a two-gene metabolic signature for survival prediction in patients with kidney renal clear cell carcinoma[J]. Aging (Albany NY), 2021, 13(6): 8276-8289. DOI: 10.18632/aging.202636. |
| [10] | 中国临床肿瘤学会指南工作委员会. 中国临床肿瘤学会(CSCO)肾癌诊疗指南2020[M]. 北京: 人民卫生出版社, 2020. |
| [11] | Bray F, Laversanne M, Sung H, et al. Global Cancer Statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834. |
| [12] | Cirillo L, Innocenti S, Becherucci F. Global epidemiology of kidney cancer[J]. Nephrol Dial Transplant, 2024, 39(6): 920-928. DOI: 10.1093/ndt/gfae036. |
| [13] |
Liu S, Cai X, Wang T, et al. Downregulation of ALDH6A1 is a new marker of muscle insulin resistance in type 2 diabetes mellitus[J]. Int J Gen Med, 2022, 15: 2137-2147. DOI: 10.2147/IJGM.S343727.
pmid: 35241929 |
| [14] | Sun J, Ding J, Shen Q, et al. Decreased propionyl-CoA metabolism facilitates metabolic reprogramming and promotes hepatocellular carcinoma[J]. J Hepatol, 2023, 78(3): 627-642. DOI: 10.1016/j.jhep.2022.11.017. |
| [15] | Tang C, Deng L, Luo Q, et al. Identification of oxidative stress-related genes and potential mechanisms in atherosclerosis[J]. Front Genet, 2022, 13: 998954. DOI: 10.3389/fgene.2022.998954. |
| [16] | Cai Y, Zeng R, Peng J, et al. The downregulated drug-metabolism related ALDH6A1 serves as predictor for prognosis and therapeutic immune response in gastric cancer[J]. Aging (Albany NY), 2022, 14(17): 7038-7051. DOI: 10.18632/aging.204270. |
| [17] | Guo Q, Zhang T, Gong Y, et al. Aldehyde dehydrogenase 6 family member A1 negatively regulates cell growth and to cisplatin sensitivity in bladder cancer[J]. Mol Carcinog, 2022, 61(7): 690-701. DOI: 10.1002/mc.23411. |
| [18] | 郭琦. 醛脱氢酶ALDH6A1对膀胱肿瘤细胞的调节和机制探讨[D]. 兰州: 兰州大学, 2022. DOI: 10.27204/d.cnki.glzhu.2022.001214. |
| [19] | 张小茜. 肾透明细胞癌基因表达谱的生物信息学分析及ALDH6A1在肾透明细胞癌中的表达及其临床意义研究[D]. 武汉: 华中科技大学, 2019. DOI: 10.27157/d.cnki.ghzku.2019.002442. |
| [20] | 许朗, 黄忠卫, 鲁大鹏, 等. MiR-663b/ALDH6A1轴通过ROS调节口腔鳞状细胞癌细胞增殖[J]. 局解手术学杂志, 2022, 31(9): 747-753. DOI: 10.11659/jjssx.12E021232. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
