Journal of International Oncology ›› 2023, Vol. 50 ›› Issue (10): 627-630.doi: 10.3760/cma.j.cn371439-20230616-00119
• Reviews • Previous Articles Next Articles
Yan Xuemin1, Wu Xiaoyong2, Zhang Jiayi2, Wen Jinxu2, Wang Yuexin2()
Received:
2023-06-16
Revised:
2023-09-07
Online:
2023-10-08
Published:
2023-11-08
Contact:
Wang Yuexin
E-mail:wangyx886@sina.com
Yan Xuemin, Wu Xiaoyong, Zhang Jiayi, Wen Jinxu, Wang Yuexin. SPRY4-IT1 and breast cancer[J]. Journal of International Oncology, 2023, 50(10): 627-630.
[1] | Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660. |
[2] |
Arnold M, Morgan E, Rumgay H, et al. Current and future burden of breast cancer: global statistics for 2020 and 2040[J]. Breast, 2022, 66: 15-23. DOI: 10.1016/j.breast.2022.08.010.
pmid: 36084384 |
[3] | 朱军, 黄美金, 李媛, 等. HER2低表达乳腺癌的靶向治疗研究进展[J]. 国际肿瘤学杂志, 2023, 50(4): 236-240. DOI: 10.3760/cma.j.cn371439-20221230-00046. |
[4] | Lee J. Current treatment landscape for early triple-negative breast cancer (TNBC)[J]. J Clin Med, 2023, 12(4): 1524. DOI: 10.3390/jcm12041524. |
[5] | Ren Z, Xue Y, Liu L, et al. Tissue factor overexpression in triple-negative breast cancer promotes immune evasion by impeding T-cell infiltration and effector function[J]. Cancer Lett, 2023, 565: 216221. DOI: 10.1016/j.canlet.2023.216221. |
[6] |
Qian X, Zhao J, Yeung PY, et al. Revealing lncRNA structures and interactions by sequencing-based approaches[J]. Trends Biochem Sci, 2019, 44(1): 33-52. DOI: 10.1016/j.tibs.2018.09.012.
pmid: 30459069 |
[7] | Bridges MC, Daulagala AC, Kourtidis A. LNCcation: lncRNA loca-lization and function[J]. J Cell Biol, 2021, 220(2): e202009045. DOI: 10.1083/jcb.202009045. |
[8] | Abd-Elmawla MA, Hassan M, Elsabagh YA, et al. Deregulation of long noncoding RNAs ANCR, TINCR, HOTTIP and SPRY4-IT1 in plasma of systemic sclerosis patients: SPRY4-IT1 as a novel biomarker of scleroderma and its subtypes[J]. Cytokine, 2020, 133: 155124. DOI: 10.1016/j.cyto.2020.155124. |
[9] | Fan MJ, Zou YH, He PJ, et al. Long non-coding RNA SPRY4-IT1 promotes epithelial-mesenchymal transition of cervical cancer by regulating the miR-101-3p/ZEB1 axis[J]. Biosci Rep, 2019, 39(6): BSR20181339. DOI: 10.1042/BSR20181339. |
[10] | Cao S, Lin L, Xia X, et al. lncRNA SPRY4-IT1 regulates cell proliferation and migration by sponging miR-101-3p and regulating AMPK expression in gastric cancer[J]. Mol Ther Nucleic Acids, 2019, 17: 455-464. DOI: 10.1016/j.omtn.2019.04.030. |
[11] | Ghafouri-Fard S, Khoshbakht T, Taheri M, et al. A review on the role of SPRY4-IT1 in the carcinogenesis[J]. Front Oncol, 2021, 11: 779483. DOI: 10.3389/fonc.2021.779483. |
[12] | Safa A, Gholipour M, Dinger ME, et al. The critical roles of lncRNAs in the pathogenesis of melanoma[J]. Exp Mol Pathol, 2020, 117: 104558. DOI: 10.1016/j.yexmp.2020.104558. |
[13] |
Ma W, Chen X, Wu X, et al. Long noncoding RNA SPRY4-IT1 promotes proliferation and metastasis of hepatocellular carcinoma via mediating TNF signaling pathway[J]. J Cell Physiol, 2020, 235(11): 7849-7862. DOI: 10.1002/jcp.29438.
pmid: 31943198 |
[14] | Li Z, Shen J, Chan MTV, et al. The long non-coding RNA SPRY4-IT1: an emerging player in tumorigenesis and osteosarcoma[J]. Cell Prolif, 2018, 51(4): e12446. DOI: 10.1111/cpr.12446. |
[15] | Xiang Y, Chen Y, Shi Y, et al. Upregulation of the long non-coding RNA SPRY4-IT1 predicts poor prognosis in breast cancer[J]. Int J Clin Exp Pathol, 2019, 12(3): 1003-1008. |
[16] | 王焱, 仰大贵, 杨令芝. 乳腺癌组织SPRY4-IT1表达水平及其对患者远期生存的预测价值[J]. 华中科技大学学报(医学版), 2019, 48(1): 93-97. DOI: 10.3870/j.issn.1672-0741.2019.01.018. |
[17] | Mohebi M, Sattari A, Ghafouri-Fard S, et al. Expression profiling revealed up-regulation of three lncRNAs in breast cancer samples[J]. Exp Mol Pathol, 2020, 117: 104544. DOI: 10.1016/j.yexmp.2020.104544. |
[18] | Zhang Y, Chen H, Yuan R, et al. PDK1-stabilized lncRNA SPRY4-IT1 promotes breast cancer progression via activating NF-κB signaling pathway[J]. Mol Carcinog, 2023, 62(7): 1009-1024. DOI: 10.1002/mc.23542. |
[19] | Hassine S, Bonnet-Magnaval F, Benoit Bouvrette LP, et al. Staufen1 localizes to the mitotic spindle and controls the localization of RNA populations to the spindle[J]. J Cell Sci, 2020, 133(14): jcs247155. DOI: 10.1242/jcs.247155. |
[20] |
Zhao L, Jiang L, Zhang M, et al. NF-κB-activated SPRY4-IT1 promotes cancer cell metastasis by downregulating TCEB1 mRNA via Staufen1-mediated mRNA decay[J]. Oncogene, 2021, 40(30): 4919-4929. DOI: 10.1038/s41388-021-01900-8.
pmid: 34163032 |
[21] | Wang HF, Dong ZY, Yan L, et al. The N-terminal polypeptide derived from vMIP-Ⅱ exerts its antitumor activity in human breast cancer through CXCR4/miR-7-5p/Skp2 pathway[J]. J Cell Physiol, 2020, 235(12): 9474-9486. DOI: 10.1002/jcp.29755. |
[22] | Yang QL, Zhang LY, Wang HF, et al. The N-terminal polypeptide derived from viral macrophage inflammatory protein Ⅱ reverses breast cancer epithelial-to-mesenchymal transition via a PDGFRα-dependent mechanism[J]. Oncotarget, 2017, 8(23): 37448-37463. DOI: 10.18632/oncotarget.16394. |
[23] | Wu H, Wang Y, Chen T, et al. The N-terminal polypeptide derived from vMIP-Ⅱ exerts its anti-tumor activity in human breast cancer by regulating lncRNA SPRY4-IT1[J]. Biosci Rep, 2018, 38(5): BSR20180411. DOI: 10.1042/BSR20180411. |
[24] |
Shi Y, Li J, Liu Y, et al. The long noncoding RNA SPRY4-IT1 increases the proliferation of human breast cancer cells by upregulating ZNF703 expression[J]. Mol Cancer, 2015, 14: 51. DOI: 10.1186/s12943-015-0318-0.
pmid: 25742952 |
[25] |
Zhang X, Mu X, Huang O, et al. ZNF703 promotes triple-negative breast cancer cells through cell-cycle signaling and associated with poor prognosis[J]. BMC Cancer, 2022, 22(1): 226. DOI: 10.1186/s12885-022-09286-w.
pmid: 35236318 |
[26] |
Song X, Zhang X, Wang X, et al. LncRNA SPRY4-IT1 regulates breast cancer cell stemness through competitively binding miR-6882-3p with TCF7L2[J]. J Cell Mol Med, 2020, 24(1): 772-784. DOI: 10.1111/jcmm.14786.
pmid: 31736268 |
[27] |
Zheng A, Zhang L, Song X, et al. Clinical significance of SPRY4-IT1 in efficacy and survival prediction in breast cancer patients undergoing neoadjuvant chemotherapy[J]. Histol Histopathol, 2020, 35(4): 361-370. DOI: 10.14670/HH-18-175.
pmid: 31638266 |
[28] |
El-Helkan B, Emam M, Mohanad M, et al. Long non-coding RNAs as novel prognostic biomarkers for breast cancer in Egyptian women[J]. Sci Rep, 2022, 12(1): 19498. DOI: 10.1038/s41598-022-23938-8.
pmid: 36376369 |
[29] | Qin X, Yin Q, Gao J, et al. Prognostic role of SPRY4-IT1 in female breast carcinoma and malignant tumors of the reproductive system: a meta-analysis[J]. Medicine (Baltimore), 2022, 101(16): e28969. DOI: 10.1097/MD.0000000000028969. |
[30] | Wang HM, Li HJ, Chen JZ, et al. Prognostic value of long nonco-ding RNA SPRY4-IT1 on survival outcomes in human carcinomas: a systematic review and meta-analysis with TCGA database[J]. Biomed Res Int, 2020, 2020: 5868602. DOI: 10.1155/2020/5868602. |
[31] | Pourramezan Z, Attar FA, Yusefpour M, et al. Circulating lncRNAs landscape as potential biomarkers in breast cancer[J]. Cancer Rep (Hoboken), 2023, 6(2): e1722. DOI: 10.1002/cnr2.1722. |
[32] | Wasson MD, Brown JM, Venkatesh J, et al. Datasets exploring putative lncRNA-miRNA-mRNA axes in breast cancer cell lines[J]. Data Brief, 2021, 37: 107241. DOI: 10.1016/j.dib.2021.107241. |
[1] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[2] | Sa Qiang, Xu Hangcheng, Wang Jiayu. Advances in immunotherapy for breast cancer [J]. Journal of International Oncology, 2024, 51(4): 227-234. |
[3] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[4] | Chen Boguang, Wang Sugui, Zhang Yongjie. Role of serum cholinesterase and inflammatory markers in the prognosis of stage ⅠA -ⅢA breast cancer [J]. Journal of International Oncology, 2024, 51(2): 73-82. |
[5] | Gu Huayan, Zhu Teng, Guo Guilong. Breast microbiota and breast cancer: present and future [J]. Journal of International Oncology, 2024, 51(1): 55-58. |
[6] | Wang Jing, Xu Wenting. Value of NLR, CEA combined with coagulation indicators in the differential diagnosis of benign and malignant breast nodules with a diameter ≤ 1.0 cm [J]. Journal of International Oncology, 2023, 50(9): 520-526. |
[7] | Feng Chengtian, Huang Furong, Cao Shiyu, Wang Jianyu, Nanding Abiyasi, Jiang Yongdong, Zhu Juanying. Relationships between HER2 protein expression and imaging features in HER2 positive breast cancer patients [J]. Journal of International Oncology, 2023, 50(9): 527-531. |
[8] | Liu Yang, Jiang Lulu, Guan Kaiwen, Zhou Yueyang, Kang Xiaohong. Role of linc01410 in the occurrence and development of malignant tumors [J]. Journal of International Oncology, 2023, 50(9): 540-543. |
[9] | Feng Dongxu, Wu Wei, Gao Pingfa, Wang Jun, Shi Lijuan, Chen Dawei, Li Wenbing, Zhang Meifeng. Effects of miR-451 on glycolysis and apoptosis of breast cancer cells by regulating Rho/ROCK1 pathway [J]. Journal of International Oncology, 2023, 50(8): 449-456. |
[10] | Pan Shulan, Liu Chang, He Ping. Effect of fritinib on angiogenesis, tumor growth and IRE1-ASK1-JNK pathway in triple negative breast cancer [J]. Journal of International Oncology, 2023, 50(8): 457-462. |
[11] | Wang Wende, Zeng De. Research progress on the mechanism of endocrine therapy resistance for breast cancer [J]. Journal of International Oncology, 2023, 50(6): 352-356. |
[12] | Li Qingshan, Xie Xin, Zhang Nan, Liu Shuai. Research progress on the application of combining radiotherapy and systemic therapy in breast cancer [J]. Journal of International Oncology, 2023, 50(6): 362-367. |
[13] | Quan Zhenhao, Xu Feipeng, Huang Zhe, Huang Xianjin, Chen Rihong, Sun Kaiyu, Hu Xu, Lin Lin. lncRNA FTX silencing inhibits gastric cancer cell proliferation through the miR-22-3p/NLRP3 inflammasome pathway [J]. Journal of International Oncology, 2023, 50(4): 202-207. |
[14] | Zhu Jun, Huang Meijin, Li Yuan, Liu Zegang, Xun Xin, Chen Hong. Research progress on targeted therapy of breast cancer with low expression of HER2 [J]. Journal of International Oncology, 2023, 50(4): 236-240. |
[15] | Zhou Ting, Xu Shaohua, Mei Lin. Efficacy and safety of bevacizumab combined with capecitabine in the treatment of advanced breast cancer [J]. Journal of International Oncology, 2023, 50(3): 144-149. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||