Journal of International Oncology ›› 2022, Vol. 49 ›› Issue (5): 292-295.doi: 10.3760/cma.j.cn371439-20220228-00054
• Reviews • Previous Articles Next Articles
Received:
2022-02-28
Revised:
2022-03-25
Online:
2022-05-08
Published:
2022-05-31
Contact:
Hu Qinyong
E-mail:rm001223@whu.edu.cn
Ning Tingting, Hu Qinyong. Research progress of metformin in tumor immunotherapy[J]. Journal of International Oncology, 2022, 49(5): 292-295.
[1] |
Kluger HM, Tawbi HA, Ascierto ML, et al. Defining tumor resistance to PD-1 pathway blockade: recommendations from the first meeting of the SITC Immunotherapy Resistance Taskforce[J]. J Immunother Cancer, 2020, 8(1): e000398. DOI: 10.1136/jitc-2019-000398.
doi: 10.1136/jitc-2019-000398 |
[2] |
Tseng CH. The effect of metformin on male reproductive function and prostate: an updated review[J]. World J Mens Health, 2022, 40(1): 11-29. DOI: 10.5534/wjmh.210001.
doi: 10.5534/wjmh.210001 |
[3] |
Gabriel SS, Tsui C, Chisanga D, et al. Transforming growth factor-β-regulated mTOR activity preserves cellular metabolism to maintain long-term T cell responses in chronic infection[J]. Immunity, 2021, 54(8): 1698-1714.e5. DOI: 10.1016/j.immuni.2021.06.007.
doi: 10.1016/j.immuni.2021.06.007 pmid: 34233154 |
[4] |
Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion[J]. Nat Rev Immunol, 2015, 15(8): 486-499. DOI: 10.1038/nri3862.
doi: 10.1038/nri3862 pmid: 26205583 |
[5] |
Kim Y, Vagia E, Viveiros P, et al. Overcoming acquired resistance to PD-1 inhibitor with the addition of metformin in small cell lung cancer (SCLC)[J]. Cancer Immunol Immunother, 2021, 70(4): 961-965. DOI: 10.1007/s00262-020-02703-8.
doi: 10.1007/s00262-020-02703-8 |
[6] |
Eikawa S, Nishida M, Mizukami S, et al. Immune-mediated antitumor effect by type 2 diabetes drug, metformin[J]. Proc Natl Acad Sci U S A, 2015, 112(6): 1809-1814. DOI: 10.1073/pnas.1417636112.
doi: 10.1073/pnas.1417636112 |
[7] |
Cha JH, Yang WH, Xia W, et al. Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1[J]. Mol Cell, 2018, 71(4): 606-620.e7. DOI: 10.1016/j.molcel.2018.07.030.
doi: 10.1016/j.molcel.2018.07.030 |
[8] |
Zhang Z, Li F, Tian Y, et al. Metformin enhances the antitumor activity of CD8+ T lymphocytes via the AMPK-miR-107-Eomes-PD-1 pathway[J]. J Immunol, 2020, 204(9): 2575-2588. DOI: 10.4049/jimmunol.1901213.
doi: 10.4049/jimmunol.1901213 pmid: 32221038 |
[9] |
Wang S, Lin Y, Xiong X, et al. Low-dose metformin reprograms the tumor immune microenvironment in human esophageal cancer: results of a phase Ⅱ clinical trial[J]. Clin Cancer Res, 2020, 26(18): 4921-4932. DOI: 10.1158/1078-0432.CCR-20-0113.
doi: 10.1158/1078-0432.CCR-20-0113 |
[10] |
Klichinsky M, Ruella M, Shestova O, et al. Human chimeric antigen receptor macrophages for cancer immunotherapy[J]. Nat Biotechnol, 2020, 38(8): 947-953. DOI: 10.1038/s41587-020-0462-y.
doi: 10.1038/s41587-020-0462-y pmid: 32361713 |
[11] |
Pathria P, Louis TL, Varner JA. Targeting tumor-associated macrophages in cancer[J]. Trends Immunol, 2019, 40(4): 310-327. DOI: 10.1016/j.it.2019.02.003.
doi: 10.1016/j.it.2019.02.003 |
[12] |
Wang JC, Sun X, Ma Q, et al. Metformin's antitumour and anti-angiogenic activities are mediated by skewing macrophage polarization[J]. J Cell Mol Med, 2018, 22(8): 3825-3836. DOI: 10.1111/jcmm.13655.
doi: 10.1111/jcmm.13655 |
[13] |
Uehara T, Eikawa S, Nishida M, et al. Metformin induces CD11b+-cell-mediated growth inhibition of an osteosarcoma: implications for metabolic reprogramming of myeloid cells and anti-tumor effects[J]. Int Immunol, 2019, 31(4): 187-198. DOI: 10.1093/intimm/dxy079.
doi: 10.1093/intimm/dxy079 |
[14] |
Liu Q, Tong D, Liu G, et al. Metformin inhibits prostate cancer progression by targeting tumor-associated inflammatory infiltration[J]. Clin Cancer Res, 2018, 24(22): 5622-5634. DOI: 10.1158/1078-0432.CCR-18-0420.
doi: 10.1158/1078-0432.CCR-18-0420 |
[15] |
Li K, Shi H, Zhang B, et al. Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer[J]. Signal Transduct Target Ther, 2021, 6(1): 362. DOI: 10.1038/s41392-021-00670-9.
doi: 10.1038/s41392-021-00670-9 |
[16] |
Qin G, Lian J, Huang L, et al. Metformin blocks myeloid-derived suppressor cell accumulation through AMPK-DACH1-CXCL1 axis[J]. Oncoimmunology, 2018, 7(7): e1442167. DOI: 10.1080/2162402X.2018.1442167.
doi: 10.1080/2162402X.2018.1442167 |
[17] |
Li L, Wang L, Li J, et al. Metformin-induced reduction of CD39 and CD73 blocks myeloid-derived suppressor cell activity in patients with ovarian cancer[J]. Cancer Res, 2018, 78(7): 1779-1791. DOI: 10.1158/0008-5472.CAN-17-2460.
doi: 10.1158/0008-5472.CAN-17-2460 |
[18] |
Souza-Fonseca-Guimaraes F, Cursons J, Huntington ND. The emergence of natural killer cells as a major target in cancer immunotherapy[J]. Trends Immunol, 2019, 40(2): 142-158. DOI: 10.1016/j.it.2018.12.003.
doi: S1471-4906(18)30229-1 pmid: 30639050 |
[19] |
Xia W, Qi X, Li M, et al. Metformin promotes anticancer activity of NK cells in a p38 MAPK dependent manner[J]. Oncoimmuno-logy, 2021, 10(1): 1995999. DOI: 10.1080/2162402X.2021.1995999.
doi: 10.1080/2162402X.2021.1995999 |
[20] |
Xia C, He Z, Liang S, et al. Metformin combined with nelfinavir induces SIRT3/mROS-dependent autophagy in human cervical cancer cells and xenograft in nude mice[J]. Eur J Pharmacol, 2019, 848: 62-69. DOI: 10.1016/j.ejphar.2019.01.045.
doi: 10.1016/j.ejphar.2019.01.045 |
[21] |
Liu T, Han C, Wang S, et al. Cancer-associated fibroblasts: an emerging target of anti-cancer immunotherapy[J]. J Hematol Oncol, 2019, 12(1): 86. DOI: 10.1186/s13045-019-0770-1.
doi: 10.1186/s13045-019-0770-1 |
[22] |
Chen G, Yu C, Tang Z, et al. Metformin suppresses gastric cancer progression through calmodulin‑like protein 3 secreted from tumor‑associated fibroblasts[J]. Oncol Rep, 2019, 41(1): 405-414. DOI: 10.3892/or.2018.6783.
doi: 10.3892/or.2018.6783 |
[23] |
Shao S, Zhao L, An G, et al. Metformin suppresses HIF-1α expression in cancer-associated fibroblasts to prevent tumor-stromal cross talk in breast cancer[J]. FASEB J, 2020, 34(8): 10860-10870. DOI: 10.1096/fj.202000951RR.
doi: 10.1096/fj.202000951RR |
[24] |
Savic Prince S, Bubendorf L. Predictive potential and need for standardization of PD-L1 immunohistochemistry[J]. Virchows Arch, 2019, 474(4): 475-484. DOI: 10.1007/s00428-018-2445-7.
doi: 10.1007/s00428-018-2445-7 |
[25] | Zhang JJ, Zhang QS, Li ZQ, et al. Metformin attenuates PD-L1 expression through activating Hippo signaling pathway in colorectal cancer cells[J]. Am J Transl Res, 2019, 11(11): 6965-6976. |
[26] |
Lu Y, Xin D, Guan L, et al. Metformin downregulates PD-L1 expression in esophageal squamous cell catrcinoma by inhibiting IL-6 signaling pathway[J]. Front Oncol, 2021, 11: 762523. DOI: 10.3389/fonc.2021.762523.
doi: 10.3389/fonc.2021.762523 |
[27] |
Chung YM, Khan PP, Wang H, et al. Sensitizing tumors to anti-PD-1 therapy by promoting NK and CD8+ T cells via pharmacological activation of FOXO3[J]. J Immunother Cancer, 2021, 9(12): e002772. DOI: 10.1136/jitc-2021-002772.
doi: 10.1136/jitc-2021-002772 |
[28] |
Shen X, Zhao Y, Liu G, et al. Upregulation of programmed death ligand 1 by liver kinase B1 and its implication in programmed death 1 blockade therapy in non-small cell lung cancer[J]. Life Sci, 2020, 256: 117923. DOI: 10.1016/j.lfs.2020.117923.
doi: 10.1016/j.lfs.2020.117923 |
[29] |
Afzal MZ, Dragnev K, Sarwar T, et al. Clinical outcomes in non-small-cell lung cancer patients receiving concurrent metformin and immune checkpoint inhibitors[J]. Lung Cancer Manag, 2019, 8(2): LMT11. DOI: 10.2217/lmt-2018-0016.
doi: 10.2217/lmt-2018-0016 |
[30] |
Ciccarese C, Iacovelli R, Buti S, et al. Concurrent nivolumab and metformin in diabetic cancer patients: is it safe and more active?[J]. Anticancer Res, 2022, 42(3): 1487-1493. DOI: 10.21873/anticanres.15620.
doi: 10.21873/anticanres.15620 pmid: 35220243 |
[31] |
Yendamuri S, Barbi J, Pabla S, et al. Body mass index influences the salutary effects of metformin on survival after lobectomy for stage Ⅰ NSCLC[J]. J Thorac Oncol, 2019, 14(12): 2181-2187. DOI: 10.1016/j.jtho.2019.07.020.
doi: S1556-0864(19)30650-1 pmid: 31398539 |
[32] |
Afzal MZ, Mercado RR, Shirai K. Efficacy of metformin in combination with immune checkpoint inhibitors (anti-PD-1/anti-CTLA-4) in metastatic malignant melanoma[J]. J Immunother Cancer, 2018, 6(1): 64. DOI: 10.1186/s40425-018-0375-1.
doi: 10.1186/s40425-018-0375-1 |
[33] |
Pietras R, Xu H, Hu X, et al. P1.04-33 retrospective descriptive analysis of metformin with atezolizumab in advanced non-small cell lung cancer in the OAK trial[J]. J Thorac Oncol, 2018, 13(10): S538-S539. DOI: 10.1016/j.jtho.2018.08.748.
doi: 10.1016/j.jtho.2018.08.748 |
[34] |
王雪, 纪国欣, 纪超, 等. 二甲双胍对合并2型糖尿病的Ⅰ型子宫内膜癌患者预后的影响[J]. 国际肿瘤学杂志, 2020, 47(7): 404-408. DOI: 10.3760/cma.j.cn371439-20191125-00045.
doi: 10.3760/cma.j.cn371439-20191125-00045 |
[35] |
Yao X, Liu H, Xu H. The impact of metformin use with survival outcomes in urologic cancers: a systematic review and meta-analysis[J]. Biomed Res Int, 2021, 2021: 5311828. DOI: 10. 1155/2021/5311828.
doi: 10. 1155/2021/5311828 |
[36] |
Ugwueze CV, Ogamba OJ, Young EE, et al. Metformin: a possible option in cancer chemotherapy[J]. Anal Cell Pathol (Amst), 2020, 2020: 7180923. DOI: 10.1155/2020/7180923.
doi: 10.1155/2020/7180923 |
[1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou. Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer [J]. Journal of International Oncology, 2024, 51(6): 321-325. |
[2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[3] | Yuan Jian, Huang Yanhua. Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer [J]. Journal of International Oncology, 2024, 51(6): 338-343. |
[4] | Chen Hongjian, Zhang Suqing. Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients [J]. Journal of International Oncology, 2024, 51(6): 344-349. |
[5] | Guo Zehao, Zhang Junwang. Role of PFDN and its subunits in tumorigenesis and tumor development [J]. Journal of International Oncology, 2024, 51(6): 350-353. |
[6] | Zhang Baihong, Yue Hongyun. Advances in anti-tumor drugs with new mechanisms of action [J]. Journal of International Oncology, 2024, 51(6): 354-358. |
[7] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[8] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[9] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[10] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[11] | Liu Jing, Liu Qin, Huang Mei. Prognostic model construction of lung infection in patients with chemoradiotherapy for esophageal cancer based on SMOTE algorithm [J]. Journal of International Oncology, 2024, 51(5): 267-273. |
[12] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. |
[13] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. |
[14] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi. Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer [J]. Journal of International Oncology, 2024, 51(5): 286-291. |
[15] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||