Journal of International Oncology ›› 2022, Vol. 49 ›› Issue (1): 26-32.doi: 10.3760/cma.j.cn371439-20210315-00003
Previous Articles Next Articles
Liu Chaoxing1, Yan Xuebing2, Yang Mengxue2, Tong Jiandong1, Mao Haiyan1()
Received:
2021-03-15
Revised:
2021-11-15
Online:
2022-01-08
Published:
2022-01-17
Contact:
Mao Haiyan
E-mail:mysea001@163.com
Liu Chaoxing, Yan Xuebing, Yang Mengxue, Tong Jiandong, Mao Haiyan. Effects of proton pump inhibitors on outcomes for advanced solid tumor patients treated with immune checkpoint inhibitors[J]. Journal of International Oncology, 2022, 49(1): 26-32.
"
临床病理特征 | 例数 | PPI组 (n=73) | Non-PPI组 (n=131) | χ2值 | P值 |
---|---|---|---|---|---|
性别 | |||||
男 | 131 | 45 | 86 | 0.327 | 0.567 |
女 | 73 | 28 | 45 | ||
年龄(岁) | |||||
≤65 | 142 | 49 | 93 | 0.332 | 0.565 |
>65 | 62 | 24 | 38 | ||
肿瘤类型 | |||||
肺癌 | 98 | 34 | 64 | ||
食管癌 | 48 | 12 | 36 | 5.406 | 0.067 |
其他 | 58 | 27 | 31 | ||
ECOG评分(分) | |||||
01 | 142 | 54 | 88 | 1.024 | 0.312 |
23 | 62 | 19 | 43 | ||
免疫治疗药物种类 | |||||
信迪利单抗 | 63 | 19 | 44 | ||
卡瑞利珠单抗 | 42 | 15 | 27 | ||
替雷利珠单抗 | 39 | 15 | 24 | 2.572 | 0.766 |
特瑞普利单抗 | 27 | 9 | 18 | ||
帕博利珠单抗 | 21 | 9 | 12 | ||
纳武利尤单抗 | 12 | 6 | 6 | ||
治疗策略 | |||||
ICI单药 | 79 | 28 | 51 | 0.007 | 0.936 |
联合治疗 | 125 | 45 | 80 |
"
变量 | OS | PFS | |||||
---|---|---|---|---|---|---|---|
HR值 | 95%CI | P值 | HR值 | 95%CI | P值 | ||
性别(男/女) | 0.93 | 0.611.43 | 0.749 | 1.12 | 0.751.67 | 0.569 | |
年龄(≤65岁/>65岁) | 0.80 | 0.531.21 | 0.296 | 1.56 | 1.052.32 | 0.029 | |
ECOG评分(01分/23分) | 1.12 | 0.761.69 | 0.569 | 1.09 | 0.731.62 | 0.679 | |
ICI治疗策略(ICI 单药/联合) | 1.15 | 0.791.68 | 0.470 | 1.31 | 0.901.91 | 0.163 | |
PPI(使用/未使用) | 1.85 | 1.242.76 | 0.003 | 1.65 | 1.092.51 | 0.019 |
"
变量 | OS | PFS | |||||
---|---|---|---|---|---|---|---|
HR值 | 95%CI | P值 | HR值 | 95%CI | P值 | ||
性别(男/女) | 0.84 | 0.521.26 | 0.468 | 0.95 | 0.601.50 | 0.839 | |
年龄(≤65岁/>65岁) | 1.44 | 0.882.33 | 0.145 | 1.61 | 1.002.58 | 0.050 | |
ECOG评分(01分/23分) | 1.22 | 0.801.84 | 0.352 | 1.25 | 0.821.92 | 0.300 | |
ICI治疗策略(ICI 单药/联合) | 1.18 | 0.791.75 | 0.424 | 1.31 | 0.881.96 | 0.185 | |
PPI(使用/未使用) | 1.90 | 1.272.85 | 0.002 | 1.73 | 1.122.65 | 0.013 |
"
变量 | OS | PFS | |||||
---|---|---|---|---|---|---|---|
HR值 | 95%CI | P值 | HR值 | 95%CI | P值 | ||
性别(男/女) | 0.63 | 0.271.47 | 0.284 | 0.98 | 0.482.01 | 0.957 | |
年龄(≤65岁/>65岁) | 1.46 | 0.842.53 | 0.178 | 1.54 | 0.882.71 | 0.131 | |
ECOG评分(01分/23分) | 1.24 | 0.742.07 | 0.420 | 1.37 | 0.812.30 | 0.242 | |
ICI治疗策略(ICI 单药/联合) | 1.18 | 0.711.94 | 0.524 | 1.21 | 0.722.03 | 0.469 | |
PPI(使用/未使用) | 2.97 | 1.705.22 | <0.001 | 1.97 | 1.093.55 | 0.025 |
"
变量 | OS | PFS | |||||
---|---|---|---|---|---|---|---|
HR值 | 95%CI | P值 | HR值 | 95%CI | P值 | ||
性别(男/女) | 2.17 | 0.865.46 | 0.101 | 0.75 | 0.331.70 | 0.487 | |
年龄(≤65岁/>65岁) | 1.88 | 1.023.45 | 0.042 | 1.72 | 0.913.25 | 0.093 | |
ECOG评分(01分/23分) | 1.59 | 0.902.83 | 0.115 | 1.75 | 0.993.09 | 0.056 | |
ICI治疗策略(ICI 单药/联合) | 1.66 | 0.932.99 | 0.089 | 1.64 | 0.903.02 | 0.109 | |
PPI(使用/未使用) | 3.38 | 1.876.11 | <0.001 | 2.31 | 1.224.38 | 0.010 |
[1] |
Kazandjian D, Suzman DL, Blumenthal G, et al. FDA approval summary: nivolumab for the treatment of metastatic non-small cell lung cancer with progression on or after platinum-based chemotherapy[J]. Oncologist, 2016, 21(5):634-642. DOI: 10.1634/theoncologist.2015-0507.
doi: 10.1634/theoncologist.2015-0507 pmid: 26984449 |
[2] |
West H, McCleod M, Hussein M, et al. Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpower130): a multicentre, rando-mised, open-label, phase 3 trial[J]. Lancet Oncol, 2019, 20(7):924-937. DOI: 10.1016/S1470-2045(19)30167-6.
doi: 10.1016/S1470-2045(19)30167-6 |
[3] |
Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer[J]. Science, 2015, 348(6230):124-128. DOI: 10.1126/science.aaa1348.
doi: 10.1126/science.aaa1348 |
[4] |
Ayers M, Lunceford J, Nebozhyn M, et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade[J]. J Clin Invest, 2017, 127(8):2930-2940. DOI: 10.1172/JCI91190.
doi: 10.1172/JCI91190 pmid: 28650338 |
[5] |
Li S, He Y, Zhang H, et al. Formulation of traditional Chinese medicine and its application on intestinal flora of constipated rats[J]. Microb Cell Fact, 2020, 19(1):212-212. DOI: 10.1186/s12934-020-01473-3.
doi: 10.1186/s12934-020-01473-3 |
[6] |
Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors[J]. Science, 2018, 359(6371):91-97. DOI: 10.1126/science.aan3706.
doi: 10.1126/science.aan3706 |
[7] |
Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients[J]. Science, 2018, 359(6371):97-103. DOI: 10.1126/science.aan4236.
doi: 10.1126/science.aan4236 pmid: 29097493 |
[8] |
杨梦雪, 袁满, 童建东, 等. 抗生素在肿瘤发生发展及免疫治疗中的作用[J]. 国际肿瘤学杂志, 2021, 48(01):48-51. DOI: 10.3760/cma.j.cn371439-20200423-00009.
doi: 10.3760/cma.j.cn371439-20200423-00009 |
[9] |
Imhann F, Bonder MJ, Vich Vila A, et al. Proton pump inhibitors affect the gut microbiome[J]. Gut, 2016, 65(5):740-748. DOI: 10.1136/gutjnl-2015-310376.
doi: 10.1136/gutjnl-2015-310376 |
[10] |
Jackson MA, Goodrich JK, Maxan ME, et al. Proton pump inhibitors alter the composition of the gut microbiota[J]. Gut, 2016, 65(5):749-756. DOI: 10.1136/gutjnl-2015-310861.
doi: 10.1136/gutjnl-2015-310861 |
[11] |
Matson V, Fessler J, Bao R, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients[J]. Science, 2018, 359(6371):104-108. DOI: 10.1126/science.aao3290.
doi: 10.1126/science.aao3290 pmid: 29302014 |
[12] |
Lanas A. We are using too many PPIs, and we need to stop: a European perspective[J]. Am J Gastroenterol, 2016, 111(8):1085-1086. DOI: 10.1038/ajg.2016.166.
doi: 10.1038/ajg.2016.166 |
[13] |
Sands SA, Tsau S, Yankee TM, et al. The effect of omeprazole on the development of experimental autoimmune encephalomyelitis in C57BL/6J and SJL/J mice[J]. BMC Res Notes, 2014, 7:605. DOI: 10.1186/1756-0500-7-605.
doi: 10.1186/1756-0500-7-605 |
[14] |
Homicsko K, Richtig G, Tuchmann F, et al. LBA2-proton pump inhibitors negatively impact survival of PD-1 inhibitor based therapies in metastatic melanoma patients[J]. Ann Oncol, 2018, 29(suppl-10):40. DOI: 10.1093/annonc/mdy511.001.
doi: 10.1093/annonc/mdy511.001 |
[15] |
Zhao S, Gao G, Li W, et al. Antibiotics are associated with attenuated efficacy of anti-PD-1/PD-L1 therapies in Chinese patients with advanced non-small cell lung cancer[J]. Lung Cancer, 2019, 130:10-17. DOI: 10.1016/j.lungcan.2019.01.017.
doi: S0169-5002(19)30303-4 pmid: 30885328 |
[16] |
Hopkins AM, Kichenadasse G, Karapetis CS, et al. Concomitant proton pump inhibitor use and survival in urothelial carcinoma treated with atezolizumab[J]. Clin Cancer Res, 2020, 26(20):5487-5493. DOI: 10.1158/1078-0432.CCR-20-1876.
doi: 10.1158/1078-0432.CCR-20-1876 |
[17] |
Cortellini A, Tucci M, Adamo V, et al. Integrated analysis of concomitant medications and oncological outcomes from PD-1/PD-L1 checkpoint inhibitors in clinical practice[J]. J Immunother Cancer, 2020, 8(2):e001361. DOI: 10.1136/jitc-2020-001361.
doi: 10.1136/jitc-2020-001361 |
[18] |
Satouchi M, Nosaki K, Takahashi T, et al. First-line pembrolizu-mab vs chemotherapy in metastatic non-small-cell lung cancer: KEYNOTE-024 Japan subset[J]. Cancer Sci, 2020, 111(12):4480-4489. DOI: 10.1111/cas.14647.
doi: 10.1111/cas.14647 |
[19] |
Chalabi M, Cardona A, Nagarkar DR, et al. Efficacy of chemothe-rapy and atezolizumab in patients with non-small-cell lung cancer receiving antibiotics and proton pump inhibitors: pooled post hoc analyses of the OAK and POPLAR trials[J]. Ann Oncol, 2020, 31(4):525-531. DOI: 10.1016/j.annonc.2020.01.006.
doi: S0923-7534(20)35927-5 pmid: 32115349 |
[20] |
Jackson MA, Verdi S, Maxan ME, et al. Gut microbiota associations with common diseases and prescription medications in a population-based cohort[J]. Nat Commun, 2018, 9(1):2655. DOI: 10.1038/s41467-018-05184-7.
doi: 10.1038/s41467-018-05184-7 |
[21] |
Le Bastard Q, Al-Ghalith GA, Gregoire M, et al. Systematic review: human gut dysbiosis induced by non-antibiotic prescription medications[J]. Aliment Pharmacol Ther, 2018, 47(3):332-345. DOI: 10.1111/apt.14451.
doi: 10.1111/apt.14451 |
[22] |
Maier L, Pruteanu M, Kuhn M, et al. Extensive impact of non-antibiotic drugs on human gut bacteria[J]. Nature, 2018, 555(7698):623-628. DOI: 10.1038/nature25979.
doi: 10.1038/nature25979 |
[23] |
Su Q, Zhu EC, Wu JB, et al. Risk of pneumonitis and pneumonia associated with immune checkpoint inhibitors for solid tumors: a systematic review and meta-analysis[J]. Front Immunol, 2019, 10:108. DOI: 10.3389/fimmu.2019.00108.
doi: 10.3389/fimmu.2019.00108 |
[1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou. Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer [J]. Journal of International Oncology, 2024, 51(6): 321-325. |
[2] | Qian Xiaotao, Shi Ziyi, Hu Ge, Wu Xiaowei. Efficacy of consolidation chemotherapy after radical radiotherapy and chemotherapy for stage Ⅲ-ⅣA esophageal squamous cell carcinoma: a real-world clinical study [J]. Journal of International Oncology, 2024, 51(6): 326-331. |
[3] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[4] | Yuan Jian, Huang Yanhua. Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer [J]. Journal of International Oncology, 2024, 51(6): 338-343. |
[5] | Chen Hongjian, Zhang Suqing. Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients [J]. Journal of International Oncology, 2024, 51(6): 344-349. |
[6] | Guo Zehao, Zhang Junwang. Role of PFDN and its subunits in tumorigenesis and tumor development [J]. Journal of International Oncology, 2024, 51(6): 350-353. |
[7] | Zhang Baihong, Yue Hongyun. Advances in anti-tumor drugs with new mechanisms of action [J]. Journal of International Oncology, 2024, 51(6): 354-358. |
[8] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[9] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[10] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[11] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[12] | Fan Zhipeng, Yu Jing, Hu Jing, Liao Zhengkai, Xu Yu, Ouyang Wen, Xie Conghua. Predictive value of changes in inflammatory markers for prognosis in patients with advanced non-small cell lung cancer treated with the first-line immunotherapy plus chemotherapy [J]. Journal of International Oncology, 2024, 51(5): 257-266. |
[13] | Liu Jing, Liu Qin, Huang Mei. Prognostic model construction of lung infection in patients with chemoradiotherapy for esophageal cancer based on SMOTE algorithm [J]. Journal of International Oncology, 2024, 51(5): 267-273. |
[14] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. |
[15] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||