
Journal of International Oncology ›› 2020, Vol. 47 ›› Issue (7): 428-430.doi: 10.3760/cma.j.cn371439-20200401-00050
• Review • Previous Articles Next Articles
					
													Zhou Jiamin, Ye Lisha, Wang Guohua(
)
												  
						
						
						
					
				
Received:2020-04-01
															
							
																	Revised:2020-04-10
															
							
															
							
																	Online:2020-07-08
															
							
																	Published:2020-08-18
															
						Contact:
								Wang Guohua   
																	E-mail:wgh@ntu.edu.cn
																					Supported by:Zhou Jiamin, Ye Lisha, Wang Guohua. Roles of microRNA in the regulation of tumor-associated macrophage polarization during the remodeling of breast cancer immune microenvironment[J]. Journal of International Oncology, 2020, 47(7): 428-430.
| [1] | 郑新宇, 王秋丽. 2015年欧洲肿瘤内科学会《原发性乳腺癌诊断、治疗及随访指南》解读[J]. 中国实用外科杂志, 2016,36(7):763-770. DOI: 10.7504/CJPS.ISSN1005-2208.2016.07.14. | 
| [2] |  
											 Ward EM, Desantis CE, Lin CC, et al. Cancer statistics: breast cancer in situ[J]. CA Cancer J Clin, 2015,65(6):481-495. DOI: 10.3322/caac.21321. 
																							 doi: 10.3322/caac.21321 pmid: 26431342  | 
										
| [3] |  
											 Li K, Wei L, Huang Y, et al. Leptin promotes breast cancer cell migration and invasion via IL-18 expression and secretion[J]. Int J Oncol, 2016,48(6):2479-2487. DOI: 10.3892/ijo.2016.3483. 
																							 doi: 10.3892/ijo.2016.3483 pmid: 27082857  | 
										
| [4] |  
											 Kasahara VA, do Carmo Nicoletti M. Graph-based clustering of miRNA sequences[J]. Microrna, 2017,6(3):166-186. DOI: 10.2174/2211536606666170724154752. 
																							 doi: 10.2174/2211536606666170724154752 pmid: 28738776  | 
										
| [5] |  
											 Roy S. miRNA in macrophage development and function[J]. Antioxid Redox Signal, 2016,25(15):795-804. DOI: 10.1089/ars.2016.6728. 
																							 doi: 10.1089/ars.2016.6728 pmid: 27353423  | 
										
| [6] |  
											 Ngambenjawong C, Gustafson HH, Pun SH. Progress in tumor-associated macrophage (TAM)-targeted therapeutics[J]. Adv Drug Deliv Rev, 2017,114:206-221. DOI: 10.1016/j.addr.2017.04.010. 
																							 pmid: 28449873  | 
										
| [7] | 李悦, 高磊, 李红昌, 等. M2型巨噬细胞标志物CD206与肿瘤[J]. 国际肿瘤学杂志, 2019,46(3):174-177. DOI: 10.3760/cma.j.issn.1673-422X.2019.03.009. | 
| [8] |  
											 Falleni M, Savi F, Tosi D, et al. M1 and M2 macrophages' clinicopathological significance in cutaneous melanoma[J]. Melanoma Res, 2017,27(3):200-210. DOI: 10.1097/CMR.0000000000000352. 
																							 pmid: 28272106  | 
										
| [9] |  
											 Bednarczyk RB, Tuli NY, Hanly EK, et al. Macrophage inflam-matory factors promote epithelial-mesenchymal transition in breast cancer[J]. Oncotarget, 2018,9(36):24272-24282. DOI: 10.18632/oncotarget.24917. 
																							 doi: 10.18632/oncotarget.24917 pmid: 29849939  | 
										
| [10] |  
											 Mu X, Shi W, Xu Y, et al. Tumor-derived lactate induces M2 macrophage polarization via the activation of the ERK/STAT3 signaling pathway in breast cancer[J]. Cell Cycle, 2018,17(4):428-438. DOI: 10.1080/15384101.2018.1444305. 
																							 pmid: 29468929  | 
										
| [11] |  
											 Grossman JG, Nywening TM, Belt BA, et al. Recruitment of CCR2+ tumor associated macrophage to sites of liver metastasis confers a poor prognosis in human colorectal cancer [J]. Oncoimmunology, 2018,7(9):e1470729. DOI: 10.1080/2162402X.2018.1470729. 
																							 pmid: 30228938  | 
										
| [12] |  
											 Ghoochani A, Schwarz MA, Yakubov E, et al. MIF-CD74 signaling impedes microglial M1 polarization and facilitates brain tumorigenesis[J]. Oncogene, 2016,35(48):6246-6261. DOI: 10.1038/onc.2016.160. 
																							 pmid: 27157615  | 
										
| [13] |  
											 Cui M, Yao X, Li Y, et al. Interactive functions of microRNAs in the miR-23a-27a-24-2 cluster and the potential for targeted therapy in cancer[J]. J Cell Physiol, 2020,235(1):6-16. DOI: 10.1002/jcp.28958. 
																							 doi: 10.1002/jcp.28958 pmid: 31192453  | 
										
| [14] |  
											 Ma S, Liu M, Xu Z, et al. A double feedback loop mediated by microRNA-23a/27a/24-2 regulates M1 versus M2 macrophage polarization and thus regulates cancer progression[J]. Oncotarget, 2016,7(12):13502-13519. DOI: 10.18632/oncotarget.6284. 
																							 doi: 10.18632/oncotarget.6284 pmid: 26540574  | 
										
| [15] |  
											 Zhong Y, Yi C. MicroRNA-720 suppresses M2 macrophage polari-zation by targeting GATA3[J]. Biosci Rep, 2016,36(4):e00363. DOI: 10.1042/BSR20160105. 
																							 pmid: 27354564  | 
										
| [16] |  
											 Weng YS, Tseng HY, Chen YA, et al. MCT-1/miR-34a/IL-6/IL-6R signaling axis promotes EMT progression, cancer stemness and M2 macrophage polarization in triple-negative breast cancer[J]. Mol Cancer, 2019,18(1):42. DOI: 10.1186/s12943-019-0988-0. 
																							 doi: 10.1186/s12943-019-0988-0 pmid: 30885232  | 
										
| [17] |  
											 Jia X, Li X, Shen Y, et al. MiR-16 regulates mouse peritoneal macrophage polarization and affects T-cell activation[J]. J Cell Mol Med, 2016,20(10):1898-1907. DOI: 10.1111/jcmm.12882. 
																							 doi: 10.1111/jcmm.12882 pmid: 27241533  | 
										
| [18] |  
											 Wang W, Liu Y, Guo J, et al. miR-100 maintains phenotype of tumor-associated macrophages by targeting mTOR to promote tumor metastasis via Stat5a/IL-1ra pathway in mouse breast cancer[J]. Oncogenesis, 2018,7(12):97. DOI: 10.1038/s41389-018-0106-y. 
																							 doi: 10.1038/s41389-018-0106-y pmid: 30563983  | 
										
| [19] |  
											 Li Y, Zhao L, Shi B, et al. Functions of miR-146a and miR-222 in tumor-associated macrophages in breast cancer[J]. Sci Rep, 2015,5:18648. DOI: 10.1038/srep18648. 
																							 pmid: 26689540  | 
										
| [20] |  
											 Frank AC, Ebersberger S, Fink AF, et al. Apoptotic tumor cell-derived microRNA-375 uses CD36 to alter the tumor-associated macrophage phenotype[J]. Nat Commun, 2019,10(1):1135. DOI: 10.1038/s41467-019-08989-2. 
																							 doi: 10.1038/s41467-019-08989-2 pmid: 30850595  | 
										
| [1] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. | 
| [2] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. | 
| [3] | Sa Qiang, Xu Hangcheng, Wang Jiayu. Advances in immunotherapy for breast cancer [J]. Journal of International Oncology, 2024, 51(4): 227-234. | 
| [4] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. | 
| [5] | Gong Yan, Chen Honglei. Research progress on the mechanism of microRNA regulation of cisplatin resistance in ovarian cancer [J]. Journal of International Oncology, 2024, 51(3): 186-190. | 
| [6] | Chen Boguang, Wang Sugui, Zhang Yongjie. Role of serum cholinesterase and inflammatory markers in the prognosis of stage ⅠA -ⅢA breast cancer [J]. Journal of International Oncology, 2024, 51(2): 73-82. | 
| [7] | Liu Xiaodi, Su Jianfei, Zhang Jingxian, Wei Xueqin, Jia Yingjie. Research progress of myeloid-derived suppressor cells in tumor angiogenesis [J]. Journal of International Oncology, 2024, 51(1): 50-54. | 
| [8] | Gu Huayan, Zhu Teng, Guo Guilong. Breast microbiota and breast cancer: present and future [J]. Journal of International Oncology, 2024, 51(1): 55-58. | 
| [9] | Wang Jing, Xu Wenting. Value of NLR, CEA combined with coagulation indicators in the differential diagnosis of benign and malignant breast nodules with a diameter ≤ 1.0 cm [J]. Journal of International Oncology, 2023, 50(9): 520-526. | 
| [10] | Feng Chengtian, Huang Furong, Cao Shiyu, Wang Jianyu, Nanding Abiyasi, Jiang Yongdong, Zhu Juanying. Relationships between HER2 protein expression and imaging features in HER2 positive breast cancer patients [J]. Journal of International Oncology, 2023, 50(9): 527-531. | 
| [11] | Feng Dongxu, Wu Wei, Gao Pingfa, Wang Jun, Shi Lijuan, Chen Dawei, Li Wenbing, Zhang Meifeng. Effects of miR-451 on glycolysis and apoptosis of breast cancer cells by regulating Rho/ROCK1 pathway [J]. Journal of International Oncology, 2023, 50(8): 449-456. | 
| [12] | Pan Shulan, Liu Chang, He Ping. Effect of fritinib on angiogenesis, tumor growth and IRE1-ASK1-JNK pathway in triple negative breast cancer [J]. Journal of International Oncology, 2023, 50(8): 457-462. | 
| [13] | Wang Wende, Zeng De. Research progress on the mechanism of endocrine therapy resistance for breast cancer [J]. Journal of International Oncology, 2023, 50(6): 352-356. | 
| [14] | Li Qingshan, Xie Xin, Zhang Nan, Liu Shuai. Research progress on the application of combining radiotherapy and systemic therapy in breast cancer [J]. Journal of International Oncology, 2023, 50(6): 362-367. | 
| [15] | Zhang Li, Xiang Zhuo, Wang Qiang, Bi Jingwang. Research progress of cytokine release syndrome related to CAR-T immunotherapy [J]. Journal of International Oncology, 2023, 50(6): 377-381. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||