
Journal of International Oncology ›› 2020, Vol. 47 ›› Issue (8): 487-491.doi: 10.3760/cma.j.cn371439-20191105-00062
• Reviews • Previous Articles Next Articles
					
													Zhang Min, Zhou Lina, Xu Shanshan, Chen Jun(
)
												  
						
						
						
					
				
Received:2019-11-05
															
							
																	Revised:2020-03-11
															
							
															
							
																	Online:2020-08-08
															
							
																	Published:2020-10-22
															
						Contact:
								Chen Jun   
																	E-mail:chenjundl@vip.sina.com
																					Supported by:Zhang Min, Zhou Lina, Xu Shanshan, Chen Jun. Research progress in predictive biomarkers related to tumor immunotherapy[J]. Journal of International Oncology, 2020, 47(8): 487-491.
| [1] |  
											 Champiat S, Ferrara R, Massard C, et al. Hyperprogressive disease: recognizing a novel pattern to improve patient management[J]. Nat Rev Clin Oncol, 2018,15(12):748-762. DOI: 10.1038/s41571-018-0111-2. 
																							 doi: 10.1038/s41571-018-0111-2 pmid: 30361681  | 
										
| [2] |  
											 Herbst RS, Baas P, Kim DW, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial[J]. Lancet, 2016,387(10027):1540-1550. DOI: 10.1016/S0140-6736(15)01281-7. 
																							 doi: 10.1016/S0140-6736(15)01281-7 pmid: 26712084  | 
										
| [3] | Reck M, Rodríguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer[J]. N Engl J Med, 2016,375(19):1823-1833. DOI: 10.1056/NEJMoa1606774. | 
| [4] |  
											 Reck M, Rodríguez-Abreu D, Robinson AG, et al. Updated analysis of KEYNOTE-024: pembrolizumab versus platinum-based chemothe-rapy for advanced non-small-cell lung cancer with PD-L1 tumor proportion score of 50% or greater[J]. J Clin Oncol, 2019,37(7):537-546. DOI: 10.1200/JCO.18.00149. 
																							 doi: 10.1200/JCO.18.00149 pmid: 30620668  | 
										
| [5] | Burgess EF, Livasy C, Hartman A, et al. Discordance of high PD-L1 expression in primary and metastatic urothelial carcinoma lesions[J]. Urol Oncol, 2019,37(5):299.e19-299.e25. DOI: 10.1016/j.urolonc.2019.01.002. | 
| [6] |  
											 Li M, Li A, Zhou S, et al. Heterogeneity of PD-L1 expression in primary tumors and paired lymph node metastases of triple negative breast cancer[J]. BMC Cancer, 2018,18(1):4. DOI: 10.1186/s12885-017-3916-y. 
																							 pmid: 29291717  | 
										
| [7] | Hong LZ, Dibaj S, Negrao MV, et al. Spatial and temporal heterogeneity of PD-L1 and its impact on benefit from immune checkpoint blockade in non-small cell lung cancer (NSCLC)[J]. J Clin Oncol, 2019, 37 Supple 15 9017. DOI: 10.1200/JCO.2019.37.15_suppl.9017. | 
| [8] | Meng X, Huang Z, Teng F, et al. Predictive biomarkers in PD-1/PD-L1 checkpoint blockade immunotherapy[J]. Cancer Treat Rev, 2015,41(10):868-876. DOI: 10.1016/j.ctrv.2015.11.001. | 
| [9] | Hellmann MD, Ciuleanu TE, Pluzanski A, et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden[J]. N Engl J Med, 2018,378(22):2093-2104. DOI: 10.1056/NEJMoa1801946. | 
| [10] |  
											 Goodman AM, Kato S, Bazhenova L, et al. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers[J]. Mol Cancer Ther, 2017,16(11):2598-2608. DOI: 10.1158/1535-7163.MCT-17-0386. 
																							 pmid: 28835386  | 
										
| [11] |  
											 Wang Z, Duan J, Cai S, et al. Assessment of blood tumor mutational burden as a potential biomarker for immunotherapy in patients with non-small cell lung cancer with use of a next-generation sequencing cancer gene panel[J]. JAMA Oncol, 2019,5(5):696-702. DOI: 10.1001/jamaoncol.2018.7098. 
																							 pmid: 30816954  | 
										
| [12] | Samstein RM, Lee CH, Shoushtari AN, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types[J]. Nat Gene, 2019,51(2):202-206. DOI: 10.1038/s41588-018-0312-8. | 
| [13] | O'Neil BH, Wallmark JM, Lorente D, et al. Safety and antitumor activity of the anti-PD-1 antibody pembrolizumab in patients with advanced colorectal carcinoma[J]. PLoS One, 2017,12(12):e0189848. DOI: 10.1371/journal.pone.0189848. | 
| [14] | Soussi T, Wiman KG. TP53: an oncogene in disguise[J]. Cell Death Differ, 2015,22(8):1239-1249. DOI: 10.1038/cdd.2015.53. | 
| [15] | Gibbons DL, Byers LA, Kurie JM. Smoking, p53 mutation, and lung cancer[J]. Mol Cancer Res, 2014,12(1):3-13. DOI: 10.1158/1541-7786.MCR-13-0539. | 
| [16] | Biton J, Mansuet-Lupo A, Pécuchet N, et al. TP53, STK11, and EGFR mutations predict tumor immune profile and the response to anti-PD-1 in lung adenocarcinoma[J]. Clin Cancer Res, 2018,24(22):5710-5723. DOI: 10.1158/1078-0432.CCR-18-0163. | 
| [17] | Cortez MA, Ivan C, Valdecanas D, et al. PDL1 regulation by p53 via miR-34[J]. J Natl Cancer Inst, 2016, 108(1): djv303. DOI: 10.1093/jnci/djv303. | 
| [18] | Ji M, Liu Y, Li Q, et al. PD-1/PD-L1 expression in non-small-cell lung cancer and its correlation with EGFR/KRAS mutations[J]. Cancer Biol Ther, 2016,17(4):407-413. DOI: 10.1080/15384047.2016.1156256. | 
| [19] | Dong ZY, Zhong WZ, Zhang XC, et al. Potential predictive value of TP53 and KRAS mutation status for response to PD-1 blockade immunotherapy in lung adenocarcinoma[J]. Clin Cancer Res, 2017,23(12):3012-3024. DOI: 10.1158/1078-0432.CCR-16-2554. | 
| [20] |  
											 Champiat S, Dercle L, Ammari S, et al. Hyperprogressive disease is a new pattern of progression in cancer patients treated by anti-PD-1/PD-L1[J]. Clin Cancer Res, 2017,23(8):1920-1928. DOI: 10.1158/1078-0432.CCR-16-1741. 
																							 pmid: 27827313  | 
										
| [21] |  
											 Kato S, Goodman A, Walavalkar V, et al. Hyperprogressors after immunotherapy: analysis of genomic alterations associated with accelerated growth rate[J]. Clin Cancer Res, 2017,23(15):4242-4250. DOI: 10.1158/1078-0432.CCR-16-3133. 
																							 pmid: 28351930  | 
										
| [22] |  
											 Gainor JF, Shaw AT, Sequist LV, et al. EGFR mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non-small cell lung cancer: a retrospective analysis[J]. Clin Cancer Res, 2016,22(18):4585-4593. DOI: 10.1158/1078-0432.CCR-15-3101. 
																							 pmid: 27225694  | 
										
| [23] |  
											 Bassi C, Ho J, Srikumar T, et al. Nuclear PTEN controls DNA repair and sensitivity to genotoxic stress[J]. Science, 2013,341(6144):395-399. DOI: 10.1126/science.1236188. 
																							 doi: 10.1126/science.1236188 pmid: 23888040  | 
										
| [24] |  
											 Peng W, Chen JQ, Liu C, et al. Loss of PTEN promotes resistance to T cell-mediated immunotherapy[J]. Cancer Discov, 2016,6(2):202-216. DOI: 10.1158/2159-8290.CD-15-0283. 
																							 pmid: 26645196  | 
										
| [25] | Zaretsky JM, Garcia-Diaz A, Shin DS, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma[J]. N Engl J Med, 2016,375(9):819-829. DOI: 10.1056/NEJMoa1604958. | 
| [26] | Duruisseaux M, Martínez-Cardús A, Calleja-Cervantes ME, et al. Epigenetic prediction of response to anti-PD-1 treatment in non-small-cell lung cancer: a multicentre, retrospective analysis[J]. Lancet Respir Med, 2018,6(10):771-781. DOI: 10.1016/S2213-2600(18)30284-4. | 
| [27] | Domingo E, Freeman-Mills L, Rayner E, et al. Somatic POLE proofreading domain mutation, immune response, and prognosis in colorectal cancer: a retrospective, pooled biomarker study[J]. Lancet Gastroenterol Hepatol, 2016,1(3):207-216. DOI: 10.1016/S2468-1253(16)30014-0. | 
| [28] |  
											 Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer[J]. Science, 2015,348(6230):124-128. DOI: 10.1126/science.aaa1348. 
																							 pmid: 25765070  | 
										
| [29] | Wakelee H, Aredo J, Vali S, et al. Prediction of PD-1 immunothe-rapy (IO) response for KRAS mutated non-small cell lung cancer (NSCLC) based on co-mutations using a computational biological model[J]. Ann Oncol, 2018, 29 Suppl 8: viii510-viii511. DOI: 10.1093/annonc/mdy292. | 
| [1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou. Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer [J]. Journal of International Oncology, 2024, 51(6): 321-325. | 
| [2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. | 
| [3] | Yuan Jian, Huang Yanhua. Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer [J]. Journal of International Oncology, 2024, 51(6): 338-343. | 
| [4] | Chen Hongjian, Zhang Suqing. Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients [J]. Journal of International Oncology, 2024, 51(6): 344-349. | 
| [5] | Guo Zehao, Zhang Junwang. Role of PFDN and its subunits in tumorigenesis and tumor development [J]. Journal of International Oncology, 2024, 51(6): 350-353. | 
| [6] | Zhang Baihong, Yue Hongyun. Advances in anti-tumor drugs with new mechanisms of action [J]. Journal of International Oncology, 2024, 51(6): 354-358. | 
| [7] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. | 
| [8] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. | 
| [9] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. | 
| [10] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. | 
| [11] | Fan Zhipeng, Yu Jing, Hu Jing, Liao Zhengkai, Xu Yu, Ouyang Wen, Xie Conghua. Predictive value of changes in inflammatory markers for prognosis in patients with advanced non-small cell lung cancer treated with the first-line immunotherapy plus chemotherapy [J]. Journal of International Oncology, 2024, 51(5): 257-266. | 
| [12] | Liu Jing, Liu Qin, Huang Mei. Prognostic model construction of lung infection in patients with chemoradiotherapy for esophageal cancer based on SMOTE algorithm [J]. Journal of International Oncology, 2024, 51(5): 267-273. | 
| [13] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. | 
| [14] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. | 
| [15] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi. Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer [J]. Journal of International Oncology, 2024, 51(5): 286-291. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||