国际肿瘤学杂志 ›› 2022, Vol. 49 ›› Issue (9): 555-559.doi: 10.3760/cma.j.cn371439-20220520-00108
收稿日期:
2022-05-20
修回日期:
2022-06-13
出版日期:
2022-09-08
发布日期:
2022-10-21
通讯作者:
邢金良
E-mail:xingjinliang@163.com
基金资助:
Gao Yizhao1, Liu Yang2, Liu Qiulong1, Xing Jinliang1,2()
Received:
2022-05-20
Revised:
2022-06-13
Online:
2022-09-08
Published:
2022-10-21
Contact:
Xing Jinliang
E-mail:xingjinliang@163.com
Supported by:
摘要:
结直肠癌(CRC)发病率逐年上升,早期诊断对改善患者预后意义重大。循环游离核酸(cfNA)具有无创、实时监测、克服肿瘤异质性等优势。对cfNA含量、突变、甲基化以及片段化模式等特征进行分析,为CRC的早期诊断、疗效监测、预后判断以及用药指导等方面提供了重要参考价值。但cfNA要实际应用于CRC的临床诊疗中还需解决检测技术未标准化、检测成本高、高诊断效能标志物的筛选以及多组合模型的构建等问题,这些挑战将为未来cfNA的研究提供新方向。
高一钊, 刘洋, 刘秋龙, 邢金良. 循环游离核酸在结直肠癌临床诊疗中的应用[J]. 国际肿瘤学杂志, 2022, 49(9): 555-559.
Gao Yizhao, Liu Yang, Liu Qiulong, Xing Jinliang. Application of circulating cell-free nucleic acid in clinical diagnosis and treatment of colorectal cancer[J]. Journal of International Oncology, 2022, 49(9): 555-559.
[1] |
Zheng R, Zhang S, Zeng H, et al. Cancer incidence and mortality in China, 2016[J]. J Natl Cancer Cent, 2022, 2(1): 1-9. DOI: 10.1016/j.jncc.2022.02.002.
doi: 10.1016/j.jncc.2022.02.002 |
[2] |
Song C, Xu W, Wu H, et al. Photodynamic therapy induces auto-phagy-mediated cell death in human colorectal cancer cells via activation of the ROS/JNK signaling pathway[J]. Cell Death Dis, 2020, 11(10): 938. DOI: 10.1038/s41419-020-03136-y.
doi: 10.1038/s41419-020-03136-y |
[3] |
Kaminski MF, Robertson DJ, Senore C, et al. Optimizing the quality of colorectal cancer screening worldwide[J]. Gastroenterology, 2020, 158(2): 404-417. DOI: 10.1053/j.gastro.2019.11.026.
doi: S0016-5085(19)41582-5 pmid: 31759062 |
[4] |
Zhou H, Zhu L, Song J, et al. Liquid biopsy at the frontier of detection, prognosis and progression monitoring in colorectal cancer[J]. Mol Cancer, 2022, 21(1): 86. DOI: 10.1186/s12943-022-01556-2.
doi: 10.1186/s12943-022-01556-2 pmid: 35337361 |
[5] |
Liu S, Wang J. Current and future perspectives of cell-free DNA in liquid biopsy[J]. Curr Issues Mol Biol, 2022, 44(6): 2695-2709. DOI: 10.3390/cimb44060184.
doi: 10.3390/cimb44060184 pmid: 35735625 |
[6] |
Zandvakili I, Lazaridis KN. Cell-free DNA testing: future applications in gastroenterology and hepatology[J]. Therap Adv Gastroenterol, 2019, 12: 1756284819841896. DOI: 10.1177/1756284819841896.
doi: 10.1177/1756284819841896 |
[7] |
Afrifa J, Zhao T, Yu J. Circulating mitochondria DNA, a non-invasive cancer diagnostic biomarker candidate[J]. Mitochondrion, 2019, 47: 238-243. DOI: 10.1016/j.mito.2018.12.003.
doi: S1567-7249(18)30123-5 pmid: 30562607 |
[8] |
Gammage PA, Frezza C. Mitochondrial DNA: the overlooked oncogenome?[J]. BMC Biol, 2019, 17(1): 53. DOI: 10.1186/s12915-019-0668-y.
doi: 10.1186/s12915-019-0668-y pmid: 31286943 |
[9] |
Kolenda T, Guglas K, Baranowski D, et al. CfRNAs as biomarkers in oncology-still experimental or applied tool for personalized medicine already?[J]. Rep Pract Oncol Radiother, 2020, 25(5): 783-792. DOI: 10.1016/j.rpor.2020.07.007.
doi: 10.1016/j.rpor.2020.07.007 |
[10] |
He Q, Long J, Yin Y, et al. Emerging roles of lncRNAs in the formation and progression of colorectal cancer[J]. Front Oncol, 2020, 9: 1542. DOI: 10.3389/fonc.2019.01542.
doi: 10.3389/fonc.2019.01542 |
[11] |
Duan Q, Cai L, Zheng K, et al. lncRNA KCNQ1OT1 knockdown inhibits colorectal cancer cell proliferation, migration and invasiveness via the PI3K/AKT pathway[J]. Oncol Lett, 2020, 20(1): 601-610. DOI: 10.3892/ol.2020.11619.
doi: 10.3892/ol.2020.11619 pmid: 32565985 |
[12] |
Xu F, Yu S, Han J, et al. Detection of circulating tumor DNA methylation in diagnosis of colorectal cancer[J]. Clin Transl Gastroenterol, 2021, 12(8): e00386. DOI: 10.14309/ctg.0000000000000386.
doi: 10.14309/ctg.0000000000000386 |
[13] |
Sun G, Meng J, Duan H, et al. Diagnostic assessment of septin9 DNA methylation for colorectal cancer using blood detection: a meta-analysis[J]. Pathol Oncol Res, 2019, 25(4): 1525-1534. DOI: 10.1007/s12253-018-0559-5.
doi: 10.1007/s12253-018-0559-5 pmid: 30488278 |
[14] |
Zhao G, Li H, Yang Z, et al. Multiplex methylated DNA testing in plasma with high sensitivity and specificity for colorectal cancer screening[J]. Cancer Med, 2019, 8(12): 5619-5628. DOI: 10.1002/cam4.2475.
doi: 10.1002/cam4.2475 |
[15] |
Cohen JD, Li L, Wang Y, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test[J]. Science, 2018, 359(6378): 926-930. DOI: 10.1126/science.aar3247.
doi: 10.1126/science.aar3247 pmid: 29348365 |
[16] |
Kozakiewicz P, Grzybowska-Szatkowska L, Ciesielka M, et al. The role of mitochondria in carcinogenesis[J]. Int J Mol Sci, 2021, 22(10): 5100. DOI: 10.3390/ijms22105100.
doi: 10.3390/ijms22105100 |
[17] |
Sundquist K, Sundquist J, Hedelius A, et al. Diagnostic potential of circulating cell-free nuclear and mitochondrial DNA for several cancer types and nonmalignant diseases: a study on suspected cancer patients[J]. Mol Carcinog, 2020, 59(12): 1362-1370. DOI: 10.1002/mc.23261.
doi: 10.1002/mc.23261 |
[18] |
Bao H, Wang Z, Ma X, et al. Letter to the editor: an ultra-sensitive assay using cell-free DNA fragmentomics for multi-cancer early detection[J]. Mol Cancer, 2022, 21(1): 129. DOI: 10.1186/s12943-022-01594-w.
doi: 10.1186/s12943-022-01594-w pmid: 35690859 |
[19] |
Schøler LV, Reinert T, Ørntoft MW, et al. Clinical implications of monitoring circulating tumor DNA in patients with colorectal cancer[J]. Clin Cancer Res, 2017, 23(18): 5437-5445. DOI: 10.1158/1078-0432.CCR-17-0510.
doi: 10.1158/1078-0432.CCR-17-0510 pmid: 28600478 |
[20] |
Chen G, Peng J, Xiao Q, et al. Postoperative circulating tumor DNA as markers of recurrence risk in stages Ⅱ to Ⅲ colorectal cancer[J]. J Hematol Oncol, 2021, 14(1): 80. DOI: 10.1186/s13045-021-01089-z.
doi: 10.1186/s13045-021-01089-z |
[21] |
Knebel FH, Bettoni F, da Fonseca LG, et al. Circulating tumor DNA detection in the management of anti-EGFR therapy for advanced colorectal cancer[J]. Front Oncol, 2019, 9: 170. DOI: 10.3389/fonc.2019.00170.
doi: 10.3389/fonc.2019.00170 pmid: 30967998 |
[22] |
An Q, Hu Y, Li Q, et al. The size of cell-free mitochondrial DNA in blood is inversely correlated with tumor burden in cancer patients[J]. Precis Clin Med, 2019, 2(3): 131-139. DOI: 10.1093/pcmedi/pbz014.
doi: 10.1093/pcmedi/pbz014 |
[23] |
Bousquet PA, Meltzer S, Sønstevold L, et al. Markers of mitochondrial metabolism in tumor hypoxia, systemic inflammation, and adverse outcome of rectal cancer[J]. Transl Oncol, 2019, 12(1): 76-83. DOI: 10.1016/j.tranon.2018.09.010.
doi: S1936-5233(18)30257-2 pmid: 30273860 |
[24] |
Xu Y, Zhou J, Yuan Q, et al. Quantitative detection of circulating MT-ND1 as a potential biomarker for colorectal cancer[J]. Bosn J Basic Med Sci, 2021, 21(5): 577-586. DOI: 10.17305/bjbms.2021.5576.
doi: 10.17305/bjbms.2021.5576 |
[25] |
Di Z, Di M, Fu W, et al. Integrated analysis identifies a nine-microRNA signature biomarker for diagnosis and prognosis in colorectal cancer[J]. Front Genet, 2020, 11: 192. DOI: 10.3389/fgene.2020.00192.
doi: 10.3389/fgene.2020.00192 pmid: 32265979 |
[26] |
Barbagallo C, Brex D, Caponnetto A, et al. LncRNA UCA1, upregulated in CRC biopsies and downregulated in serum exosomes, controls mRNA expression by RNA-RNA interactions[J]. Mol Ther Nucleic Acids, 2018, 12: 229-241. DOI: 10.1016/j.omtn.2018.05.009.
doi: 10.1016/j.omtn.2018.05.009 |
[27] |
Xu W, Zhou G, Wang H, et al. Circulating lncRNA SNHG11 as a novel biomarker for early diagnosis and prognosis of colorectal cancer[J]. Int J Cancer, 2020, 146(10): 2901-2912. DOI: 10.1002/ijc.32747.
doi: 10.1002/ijc.32747 pmid: 31633800 |
[28] |
Li J, Song Y, Wang J, et al. Plasma circular RNA panel acts as a novel diagnostic biomarker for colorectal cancer detection[J]. Am J Transl Res, 2020, 12(11): 7395-7403.
pmid: 33312376 |
[29] |
Pan B, Qin J, Liu X, et al. Identification of serum exosomal hsa-circ-0004771 as a novel diagnostic biomarker of colorectal cancer[J]. Front Genet, 2019, 10: 1096. DOI: 10.3389/fgene.2019.01096.
doi: 10.3389/fgene.2019.01096 pmid: 31737058 |
[30] |
Tsukamoto M, Iinuma H, Yagi T, et al. Circulating exosomal microRNA-21 as a biomarker in each tumor stage of colorectal cancer[J]. Oncology, 2017, 92(6): 360-370. DOI: 10.1159/000463387.
doi: 10.1159/000463387 pmid: 28376502 |
[31] |
Liang ZX, Liu HS, Wang FW, et al. LncRNA RPPH1 promotes colorectal cancer metastasis by interacting with TUBB3 and by promoting exosomes-mediated macrophage M2 polarization[J]. Cell Death Dis, 2019, 10(11): 829. DOI: 10.1038/s41419-019-2077-0.
doi: 10.1038/s41419-019-2077-0 |
[32] |
Oehme F, Krahl S, Gyorffy B, et al. Low level of exosomal long non-coding RNA HOTTIP is a prognostic biomarker in colorectal cancer[J]. RNA Biol, 2019, 16(10): 1339-1345. DOI: 10.1080/15476286.2019.1637697.
doi: 10.1080/15476286.2019.1637697 |
[33] |
Zeng K, Chen X, Xu M, et al. CircHIPK3 promotes colorectal cancer growth and metastasis by sponging miR-7[J]. Cell Death Dis, 2018, 9(4): 417. DOI: 10.1038/s41419-018-0454-8.
doi: 10.1038/s41419-018-0454-8 |
[34] |
Jin G, Liu Y, Zhang J, et al. A panel of serum exosomal microRNAs as predictive markers for chemoresistance in advanced colorectal cancer[J]. Cancer Chemother Pharmacol, 2019, 84(2): 315-325. DOI: 10.1007/s00280-019-03867-6.
doi: 10.1007/s00280-019-03867-6 |
[35] |
Xiao Z, Qu Z, Chen Z, et al. LncRNA HOTAIR is a prognostic biomarker for the proliferation and chemoresistance of colorectal cancer via miR-203a-3p-mediated Wnt/ß-catenin signaling pathway[J]. Cell Physiol Biochem, 2018, 46(3): 1275-1285. DOI: 10.1159/000489110.
doi: 10.1159/000489110 pmid: 29680837 |
[1] | 张蕊, 褚衍六. 基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[2] | 高凡, 王萍, 杜超, 褚衍六. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[3] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝. 癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
[4] | 孙国宝, 杨倩, 庄庆春, 高斌斌, 孙晓刚, 宋伟, 沙丹. 结直肠癌肝转移组织病理学生长方式研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 114-118. |
[5] | 刘德宝, 孙子雯, 鲁守堂, 徐海东. ASB6在结直肠癌组织中的表达及临床意义[J]. 国际肿瘤学杂志, 2023, 50(8): 470-474. |
[6] | 陈卓, 陶俊, 陈琳, 柯晶. 外周血miR-194联合粪便miR-143检测对结直肠癌临床筛查的价值[J]. 国际肿瘤学杂志, 2023, 50(5): 268-273. |
[7] | 黄镇, 张蔡羽天, 柯少波, 石薇, 赵文思, 陈永顺. 结直肠癌患者术后预后模型的构建[J]. 国际肿瘤学杂志, 2023, 50(3): 157-163. |
[8] | 徐良富, 李袁飞. MSS型结直肠癌肿瘤微环境及免疫联合治疗研究进展[J]. 国际肿瘤学杂志, 2023, 50(3): 186-190. |
[9] | 黄锐, 张允清. 安罗替尼单药在PS评分差的广泛期小细胞肺癌二线治疗中的临床疗效[J]. 国际肿瘤学杂志, 2023, 50(12): 705-710. |
[10] | 刘玉杰, 赵志强, 王子琤. 早期结直肠癌患者外周血单个核细胞中TOP2A、ERBB2的水平及其诊断价值[J]. 国际肿瘤学杂志, 2023, 50(12): 717-722. |
[11] | 陶红, 殷红, 罗宏, 陶佳瑜. 靶向肿瘤相关巨噬细胞增强结直肠癌免疫检查点抑制剂疗效的潜在策略[J]. 国际肿瘤学杂志, 2023, 50(11): 683-687. |
[12] | 王熙, 吴川清. 结直肠癌多药耐药逆转的研究进展[J]. 国际肿瘤学杂志, 2023, 50(1): 42-46. |
[13] | 徐航程, 吴云, 王佳玉. HER2低表达乳腺癌研究进展[J]. 国际肿瘤学杂志, 2022, 49(9): 513-516. |
[14] | 张露, 周菊英, 马辰莺, 林州. 复发转移性宫颈癌免疫治疗相关进展[J]. 国际肿瘤学杂志, 2022, 49(9): 517-520. |
[15] | 何哲锋, 吴燚阳, 李振军, 应晓江. 炎性相关标志物对结直肠癌的预测价值[J]. 国际肿瘤学杂志, 2022, 49(9): 560-563. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||