国际肿瘤学杂志 ›› 2022, Vol. 49 ›› Issue (2): 121-124.doi: 10.3760/cma.j.cn371439-20210202-00020
收稿日期:
2021-02-02
修回日期:
2021-06-03
出版日期:
2022-02-08
发布日期:
2022-03-11
通讯作者:
吴清明
E-mail:wuhe9224@sina.com
基金资助:
He Xiaokang1, Tu Xian2, Yao Fei2, Wu Qingming1,2()
Received:
2021-02-02
Revised:
2021-06-03
Online:
2022-02-08
Published:
2022-03-11
Contact:
Wu Qingming
E-mail:wuhe9224@sina.com
Supported by:
摘要:
结直肠癌(CRC)是消化道常见恶性肿瘤,严重威胁人类的健康。近年来研究发现,具核梭杆菌(Fn)与CRC的发生呈正相关。在CRC癌变的发生过程中,Fn可通过诱导促炎性细胞因子的表达从而引发慢性炎症反应、抑制免疫细胞的功能、诱导化疗耐药、促进肿瘤基因和微小RNA表达、调控糖酵解等途径发挥重要作用。
贺小康, 涂贤, 姚菲, 吴清明. 具核梭杆菌与结直肠癌发生发展的研究进展[J]. 国际肿瘤学杂志, 2022, 49(2): 121-124.
He Xiaokang, Tu Xian, Yao Fei, Wu Qingming. Research progress of Fusobacterium nucleatum and occurrence and development of colorectal cancer[J]. Journal of International Oncology, 2022, 49(2): 121-124.
[1] |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(1): 7-30. DOI: 10.3322/caac.21590.
doi: 10.3322/caac.21590 |
[2] |
Hashemi Goradel N, Heidarzadeh S, Jahangiri S, et al. Fusobacte-rium nucleatum and colorectal cancer: a mechanistic overview[J]. J Cell Physiol, 2019, 234(3): 2337-2344. DOI: 10.1002/jcp.27250.
doi: 10.1002/jcp.27250 pmid: 30191984 |
[3] |
Mima K, Nishihara R, Qian ZR, et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis[J]. Gut, 2016, 65(12): 1973-1980. DOI: 10.1136/gutjnl-2015-310101.
doi: 10.1136/gutjnl-2015-310101 |
[4] |
Tunsjø HS, Gundersen G, Rangnes F, et al. Detection of Fusobacterium nucleatum in stool and colonic tissues from Norwegian colorectal cancer patients[J]. Eur J Clin Microbiol Infect Dis, 2019, 38(7): 1367-1376. DOI: 10.1007/s10096-019-03562-7.
doi: 10.1007/s10096-019-03562-7 |
[5] | Signat B, Roques C, Poulet P, et al. Fusobacterium nucleatum in periodontal health and disease[J]. Curr Issues Mol Biol, 2011, 13(2): 25-36. |
[6] |
Allen-Vercoe E, Strauss J, Chadee K. Fusobacterium nucleatum: an emerging gut pathogen?[J]. Gut Microbes, 2011, 2(5): 294-298. DOI: 10.4161/gmic.2.5.18603.
doi: 10.4161/gmic.2.5.18603 pmid: 22067936 |
[7] |
Castellarin M, Warren RL, Freeman JD, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma[J]. Genome Res, 2012, 22(2): 299-306. DOI: 10.1101/gr.126516.111.
doi: 10.1101/gr.126516.111 pmid: 22009989 |
[8] |
Warren RL, Freeman DJ, Pleasance S, et al. Co-occurrence of anaerobic bacteria in colorectal carcinomas[J]. Microbiome, 2013, 1(1): 16. DOI: 10.1186/2049-2618-1-16.
doi: 10.1186/2049-2618-1-16 pmid: 24450771 |
[9] |
Weng YJ, Gan HY, Li X, et al. Correlation of diet, microbiota and metabolite networks in inflammatory bowel disease[J]. J Dig Dis, 2019, 20(9): 447-459. DOI: 10.1111/1751-2980.12795.
doi: 10.1111/1751-2980.12795 |
[10] |
Rubinstein MR, Wang X, Liu W, et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin[J]. Cell Host Microbe, 2013, 14(2): 195-206. DOI: 10.1016/j.chom.2013.07.012.
doi: 10.1016/j.chom.2013.07.012 pmid: 23954158 |
[11] |
Brennan CA, Garrett WS. Gut microbiota, inflammation, and colo-rectal cancer[J]. Annu Rev Microbiol, 2016, 70:395-411. DOI: 10.1146/annurev-micro-102215-095513.
doi: 10.1146/annurev-micro-102215-095513 |
[12] |
Proença MA, Biselli JM, Succi M, et al. Relationship between Fusobacterium nucleatum, inflammatory mediators and microRNAs in colorectal carcinogenesis[J]. World J Gastroenterol, 2018, 24(47): 5351-5365. DOI: 10.3748/wjg.v24.i47.5351.
doi: 10.3748/wjg.v24.i47.5351 |
[13] |
Jia YP, Wang K, Zhang ZJ, et al. TLR2/TLR4 activation induces Tregs and suppresses intestinal inflammation caused by Fusobacte-rium nucleatum in vivo[J]. PLoS One, 2017, 12(10): e0186179. DOI: 10.1371/journal.pone.0186179.
doi: 10.1371/journal.pone.0186179 |
[14] |
Wang Q, Zhao L, Xu C, et al. Fusobacterium nucleatum stimulates monocyte adhesion to and transmigration through endothelial cells[J]. Arch Oral Biol, 2019, 100:86-92. DOI: 10.1016/j.archoralbio.2019.02.013.
doi: 10.1016/j.archoralbio.2019.02.013 |
[15] |
Tang B, Wang K, Jia YP, et al. Fusobacterium nucleatum-induced impairment of autophagic flux enhances the expression of proinflammatory cytokines via ROS in Caco-2 cells[J]. PLoS One, 2016, 11(11): e0165701. DOI: 10.1371/journal.pone.0165701.
doi: 10.1371/journal.pone.0165701 |
[16] |
Wu J, Li Q, Fu X. Fusobacterium nucleatum contributes to the carcinogenesis of colorectal cancer by inducing inflammation and suppressing host immunity[J]. Transl Oncol, 2019, 12(6): 846-851. DOI: 10.1016/j.tranon.2019.03.003.
doi: 10.1016/j.tranon.2019.03.003 |
[17] |
Bashir A, Miskeen AY, Hazari YM, et al. Fusobacterium nucleatum, inflammation, and immunity: the fire within human gut[J]. Tumour Biol, 2016, 37(3): 2805-2810. DOI: 10.1007/s13277-015-4724-0.
doi: 10.1007/s13277-015-4724-0 |
[18] |
Gur C, Ibrahim Y, Isaacson B, et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack[J]. Immunity, 2015, 42(2): 344-355. DOI: 10.1016/j.immuni.2015.01.010.
doi: 10.1016/j.immuni.2015.01.010 |
[19] |
Ye X, Wang R, Bhattacharya R, et al. Fusobacterium nucleatum subspecies animalis influences proinflammatory cytokine expression and monocyte activation in human colorectal tumors[J]. Cancer Prev Res (Phila), 2017, 10(7): 398-409. DOI: 10.1158/1940-6207.CAPR-16-0178.
doi: 10.1158/1940-6207.CAPR-16-0178 |
[20] |
Keku TO, McCoy AN, Azcarate-Peril AM. Fusobacterium spp. and colorectal cancer: cause or consequence?[J]. Trends Microbiol, 2013, 21(10): 506-508. DOI: 10.1016/j.tim.2013.08.004.
doi: 10.1016/j.tim.2013.08.004 |
[21] |
Edin S, Wikberg ML, Dahlin AM, et al. The distribution of macrophages with a M1 or M2 phenotype in relation to prognosis and the molecular characteristics of colorectal cancer[J]. PLoS One, 2012, 7(10): e47045. DOI: 10.1371/journal.pone.0047045.
doi: 10.1371/journal.pone.0047045 |
[22] |
Edin S, Wikberg ML, Oldenborg PA, et al. Macrophages: good guys in colorectal cancer[J]. Oncoimmunology, 2013, 2(2): e23038. DOI: 10.4161/onci.23038.
doi: 10.4161/onci.23038 |
[23] |
Park HE, Kim JH, Cho NY, et al. Intratumoral Fusobacterium nucleatum abundance correlates with macrophage infiltration and CDKN2A methylation in microsatellite-unstable colorectal carcinoma[J]. Virchows Arch, 2017, 471(3): 329-336. DOI: 10.1007/s00428-017-2171-6.
doi: 10.1007/s00428-017-2171-6 |
[24] |
Yu T, Guo F, Yu Y, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy[J]. Cell, 2017, 170(3): 548-563.e16. DOI: 10.1016/j.cell.2017.07.008.
doi: 10.1016/j.cell.2017.07.008 |
[25] |
Zhang S, Yang Y, Weng W, et al. Fusobacterium nucleatum promotes chemoresistance to 5-fluorouracil by upregulation of BIRC3 expression in colorectal cancer[J]. J Exp Clin Cancer Res, 2019, 38(1): 14. DOI: 10.1186/s13046-018-0985-y.
doi: 10.1186/s13046-018-0985-y |
[26] |
Baldin V, Lukas J, Marcote MJ, et al. Cyclin D1 is a nuclear protein required for cell cycle progression in G1[J]. Genes Dev, 1993, 7(5): 812-821. DOI: 10.1101/gad.7.5.812.
doi: 10.1101/gad.7.5.812 |
[27] |
Chen Y, Peng Y, Yu J, et al. Invasive Fusobacterium nucleatum activates beta-catenin signaling in colorectal cancer via a TLR4/P-PAK1 cascade[J]. Oncotarget, 2017, 8(19): 31802-31814. DOI: 10.18632/oncotarget.15992.
doi: 10.18632/oncotarget.15992 |
[28] |
Hur K, Toiyama Y, Okugawa Y, et al. Circulating microRNA-203 predicts prognosis and metastasis in human colorectal cancer[J]. Gut, 2017, 66(4): 654-665. DOI: 10.1136/gutjnl-2014-308737.
doi: 10.1136/gutjnl-2014-308737 |
[29] |
Yang Y, Weng W, Peng J, et al. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor-κB, and up-regulating expression of microRNA-21[J]. Gastroenterology, 2017, 152(4): 851-866.e24. DOI: 10.1053/j.gastro.2016.11.018.
doi: 10.1053/j.gastro.2016.11.018 |
[30] |
Hong J, Guo F, Lu SY, et al. F. nucleatum targets lncRNA ENO1-IT1 to promote glycolysis and oncogenesis in colorectal cancer[J]. Gut, 2021, 70(11): 2123-2137. DOI: 10.1136/gutjnl-2020-322780.
doi: 10.1136/gutjnl-2020-322780 pmid: 33318144 |
[31] |
Bullman S, Pedamallu CS, Sicinska E, et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer[J]. Science, 2017, 358(6369): 1443-1448. DOI: 10.1126/science.aal5240.
doi: 10.1126/science.aal5240 pmid: 29170280 |
[32] |
Rubinstein MR, Baik JE, Lagana SM, et al. Fusobacterium nucleatum promotes colorectal cancer by inducing Wnt/β-catenin modulator Annexin A1[J]. EMBO Rep, 2019, 20(4): e47638. DOI: 10.15252/embr.201847638.
doi: 10.15252/embr.201847638 |
[1] | 钱晓涛, 石子宜, 胡格, 吴晓维. Ⅲ~ⅣA期食管鳞状细胞癌放化疗后行巩固化疗的疗效:一项真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(6): 326-331. |
[2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊. 局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[3] | 张蕊, 褚衍六. 基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[4] | 高凡, 王萍, 杜超, 褚衍六. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[5] | 范志鹏, 余静, 胡静, 廖正凯, 徐禹, 欧阳雯, 谢丛华. 炎症标志物的变化趋势对一线接受免疫联合化疗的晚期非小细胞肺癌患者预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(5): 257-266. |
[6] | 杨琳, 路宁, 温华, 张明鑫, 朱琳. 炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[7] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝. 癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
[8] | 刘萍萍, 何学芳, 张翼, 杨旭, 张珊珊, 季一飞. 原发性脑胶质瘤患者术后复发危险因素及预测模型构建[J]. 国际肿瘤学杂志, 2024, 51(4): 193-197. |
[9] | 万芳, 杨钢, 李睿, 万启晶. 食管癌患者血清miR-497、miR-383水平及临床意义[J]. 国际肿瘤学杂志, 2024, 51(4): 204-209. |
[10] | 姚益新, 沈煜霖. 血清SOCS3、TXNIP水平对肝细胞癌TACE治疗预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(4): 217-222. |
[11] | 孙维蔚, 姚学敏, 王鹏健, 王静, 贾敬好. 基于血液学指标探讨免疫治疗晚期非小细胞肺癌预后因素及列线图构建[J]. 国际肿瘤学杂志, 2024, 51(3): 143-150. |
[12] | 刘玉兰, 井海燕, 孙静, 宋伟, 沙丹. 胃癌免疫治疗疗效预测及预后标志物的研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 175-180. |
[13] | 彭琴, 蔡玉婷, 王伟. KPNA2在肝癌中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 181-185. |
[14] | 孙国宝, 杨倩, 庄庆春, 高斌斌, 孙晓刚, 宋伟, 沙丹. 结直肠癌肝转移组织病理学生长方式研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 114-118. |
[15] | 陈波光, 王苏贵, 张永杰. 血清胆碱酯酶与炎症标志物在ⅠA~ⅢA期乳腺癌预后中的作用[J]. 国际肿瘤学杂志, 2024, 51(2): 73-82. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||