国际肿瘤学杂志 ›› 2020, Vol. 47 ›› Issue (2): 93-97.doi: 10.3760/cma.j.issn.1673-422X.2020.02.006
收稿日期:
2019-10-22
修回日期:
2020-01-02
出版日期:
2020-02-08
发布日期:
2020-05-27
通讯作者:
周生余
E-mail:typhoonwho@126.com
基金资助:
Received:
2019-10-22
Revised:
2020-01-02
Online:
2020-02-08
Published:
2020-05-27
Contact:
Zhou Shengyu
E-mail:typhoonwho@126.com
Supported by:
摘要:
免疫检查点抑制剂目前已成为多种晚期恶性肿瘤患者长期生存获益的极其重要的治疗手段。然而,少数患者会发生超进展性疾病(HPD),导致生存期缩短及生命质量急剧下降,对此尚缺乏有效的解救治疗手段。近期研究显示,HPD的发生与高龄、肿瘤复发、多病灶转移等临床因素相关;可能的发生机制包括抑制性免疫调节、调节性T细胞聚集、异常炎症反应及原癌基因激活、抑癌基因突变等多种途径。合理筛选、精准检测、密切监测以及联合治疗可能降低免疫治疗发生HPD的风险。
周生余. 免疫检查点抑制剂治疗晚期恶性肿瘤出现超进展性疾病研究现状[J]. 国际肿瘤学杂志, 2020, 47(2): 93-97.
Zhou Shengyu. Research status of immune checkpoint inhibitors in the treatment of advanced malignant tumors with hyperprogressive diseases[J]. Journal of International Oncology, 2020, 47(2): 93-97.
[1] |
Ferris RL, Blumenschein G Jr, Fayette J , et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck[J]. N Engl J Med, 2016,375(19):1856-1867. DOI: 10.1056/NEJMoa 1602252.
doi: 10.1056/NEJMoa1602252 |
[2] |
Borghaei H, Paz-Ares L, Horn L , et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer[J]. N Engl J Med, 2015,373(17):1627-1639. DOI: 10.1056/NEJMoa 1507643.
doi: 10.1056/NEJMoa1507643 |
[3] |
Motzer RJ, Escudier B, McDermott DF , et al. Nivolumab versus everolimus in advanced renal-cell carcinoma[J]. N Engl J Med, 2015,373(19):1803-1813. DOI: 10.1056/NEJMoa1510665.
doi: 10.1056/NEJMoa1510665 |
[4] |
Champiat S, Ferrara R, Massard C , et al. Hyperprogressive disease: recognizing a novel pattern to improve patient management[J]. Nat Rev Clin Oncol, 2018,15(12):748-762. DOI: 10.1038/s41571-018-0111-2.
doi: 10.1038/s41571-018-0111-2 |
[5] | Champiat S, Dercle L, Ammari S , et al. Hyperprogressive disease is a new pattern of progression in cancer patients treated by anti-PD-1/PD-L1[J]. Clin Cancer Res, 2017,23(8):1920-1928. DOI: 10.1158/1078-0432.CCR-16-1741. |
[6] |
Saâda-Bouzid E, Defaucheux C, Karabajakian A , et al. Hyperprogression during anti-PD-1/PD-L1 therapy in patients with recurrent and/or metastatic head and neck squamous cell carcinoma[J]. Ann Oncol, 2017,28(7):1605-1611. DOI: 10.1093/annonc/mdx178.
doi: 10.1093/annonc/mdx178 |
[7] |
Ferrara R, Mezquita L, Texier M , et al. Hyperprogressive disease in patients with advanced non-small cell lung cancer treated with PD-1/PD-L1 inhibitors or with single-agent chemotherapy[J]. JAMA Oncol, 2018,4(11):1543-1552. DOI: 10.1001/jamaoncol.2018.3676.
doi: 10.1001/jamaoncol.2018.3676 |
[8] |
Kato S, Goodman A, Walavalkar V , et al. Hyperprogressors after immunotherapy: analysis of genomic alterations associated with accelerated growth rate[J]. Clin Cancer Res, 2017,23(15):4242-4250. DOI: 10.1158/1078-0432.CCR-16-3133.
doi: 10.1158/1078-0432.CCR-16-3133 |
[9] |
Sasaki A, Nakamura Y, Mishima S , et al. Predictive factors for hyperprogressive disease during nivolumab as anti-PD1 treatment in patients with advanced gastric cancer[J]. Gastric Cancer, 2019,22(4):793-802. DOI: 10.1007/s10120-018-00922-8.
doi: 10.1007/s10120-018-00922-8 |
[10] |
Funazo T, Nomizo T, Kim YH . Liver metastasis is associated with poor progression-free survival in patients with non-small cell lung cancer treated with nivolumab[J]. J Thorac Oncol, 2017,12(9):e140-e141. DOI: 10.1016/j.jtho.2017.04.027.
doi: 10.1016/j.jtho.2017.04.027 |
[11] |
Weiss GJ, Beck J, Braun DP , et al. Tumor cell-free DNA copy number instability predicts therapeutic response to immunotherapy[J]. Clin Cancer Res, 2017,23(17):5074-5081. DOI: 10.1158/1078-0432.CCR-17-0231.
doi: 10.1158/1078-0432.CCR-17-0231 |
[12] |
Zaretsky JM, Garcia-Diaz A, Shin DS , et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma[J]. N Engl J Med, 2016 , 375(9):819-829. DOI: 10.1056/NEJMoa1604958.
doi: 10.1056/NEJMoa1604958 |
[13] |
Koyama S, Akbay EA, Li YY , et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints[J]. Nat Commun, 2016,7:10501. DOI: 10.1038/ncomms10501.
doi: 10.1038/ncomms10501 |
[14] |
Lo Russo G, Moro M, Sommariva M , et al. Antibody-Fc/FcR interaction on macrophages as a mechanism for hyperprogressive disease in non-small cell lung cancer subsequent to PD-1/PD-L1 blockade[J]. Clin Cancer Res, 2019,25(3):989-999. DOI: 10.1158/1078-0432.CCR-18-1390.
doi: 10.1158/1078-0432.CCR-18-1390 |
[15] |
Adams TA, Vail PJ, Ruiz A , et al. Composite analysis of immunological and metabolic markers defines novel subtypes of triple negative breast cancer[J]. Mod Pathol, 2018,31(2):288-298. DOI: 10.1038/modpathol.2017.126.
doi: 10.1038/modpathol.2017.126 |
[16] |
Kubota K, Moriyama M, Furukawa S , et al. CD163+CD204+ tumor-associated macrophages contribute to T cell regulation via interleukin-10 and PD-L1 production in oral squamous cell carcinoma [J]. Sci Rep, 2017,7(1):1755. DOI: 10.1038/s41598-017-01661-z.
doi: 10.1038/s41598-017-01661-z |
[17] |
Lamichhane P, Karyampudi L, Shreeder B , et al. IL10 release upon PD-1 blockade sustains immunosuppression in ovarian cancer[J]. Cancer Res, 2017,77(23):6667-6678. DOI: 10.1158/0008-5472.CAN-17-0740.
doi: 10.1158/0008-5472.CAN-17-0740 |
[18] |
Sun Z, Fourcade J, Pagliano O , et al. IL10 and PD-1 cooperate to limit the activity of tumor-specific CD8+ T cells [J]. Cancer Res, 2015 , 75(8):1635-1644. DOI: 10.1158/0008-5472.CAN-14-3016.
doi: 10.1158/0008-5472.CAN-14-3016 |
[19] |
Mantovani A, Sica A . Macrophages, innate immunity and cancer: balance, tolerance, and diversity[J]. Curr Opin Immunol, 2010,22(2):231-237. DOI: 10.1016/j.coi.2010.01.009.
doi: 10.1016/j.coi.2010.01.009 |
[20] | Spranger S, Spaapen RM, Zha Y , et al. Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells Sci Transl Med, 2013, 5(200): 200ra116. DOI: 10.1126/scitranslmed.3006504. |
[21] |
Engblom C, Pfirschke C, Pittet MJ . The role of myeloid cells in cancer therapies[J]. Nat Rev Cancer, 2016,16(7):447-462. DOI: 10.1038/nrc.2016.54.
doi: 10.1038/nrc.2016.54 |
[22] |
Gao J, Shi LZ, Zhao H , et al. Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA4 therapy[J]. Cell, 2016, 167(2):397-404. e9. DOI: 10.1016/j.cell.2016.08.069.
doi: 10.1016/j.cell.2016.08.069 |
[23] |
Mandai M, Hamanishi J, Abiko K , et al. Dual faces of IFNγ in cancer progression: a role of PD-L1 induction in the determination of pro- and antitumor immunity[J]. Clin Cancer Res, 2016,22(10):2329-2334. DOI: 10.1158/1078-0432.CCR-16-0224.
doi: 10.1158/1078-0432.CCR-16-0224 |
[24] |
Huang RY, Francois A, McGray AR , et al. Compensatory upregulation of PD-1, LAG-3, and CTLA-4 limits the efficacy of single-agent checkpoint blockade in metastatic ovarian cancer[J]. Oncoimmunology, 2016,6(1):e1249561. DOI: 10.1080/2162402X.2016.1249561.
doi: 10.1080/2162402X.2016.1249561 |
[25] |
Kahan SM, Wherry EJ, Zajac AJ . T cell exhaustion during persistent viral infections[J]. Virology. 2015, 479-480:180-193. DOI: 10.1016/j.virol.2014.12.033.
doi: 10.1016/j.virol.2014.12.033 |
[26] | Togasaki K, Sukawa Y, Kanai T , et al. Clinical efficacy of immune checkpoint inhibitors in the treatment of unresectable advanced or recurrent gastric cancer: an evidence-based review of therapies[J]. Onco Targets Ther, 2018,11:8239-8250. DOI: 10.2147/OTT.S152514. |
[27] | Barnaba V, Schinzari V . Induction, control, and plasticity of Treg cells: the immune regulatory network revised?[J]. Eur J Immunol, 2013,43(2):318-322. DOI: 10.1002/eji.201243265. |
[28] | Lowther DE, Goods BA, Lucca LE , et al. PD-1 marks dysfunctional regulatory T cells in malignant gliomas[J]. JCI Insight, 2016, 1(5). pii: e85935. DOI: 10.1172/jci.insight.85935. |
[29] | Ellestad KK, Thangavelu G, Ewen CL , et al. PD-1 is not required for natural or peripherally induced regulatory T cells: severe autoimmunity despite normal production of regulatory T cells[J]. Eur J Immunol, 2014 , 44(12):3560-3572. DOI: 10.1002/eji.201444688. |
[30] | Moorman JP, Wang JM, Zhang Y , et al. Tim-3 pathway controls regulatory and effector T cell balance during hepatitis C virus infection[J]. J Immunol, 2012,189(2):755-766. DOI: 10.4049/jimmunol.1200162. |
[31] | Nakamura K, Smyth MJ . Targeting cancer-related inflammation in the era of immunotherapy[J]. Immunol Cell Biol, 2017,95(4):325-332. DOI: 10.1038/icb.2016.126. |
[32] | Dulos J, Carven GJ, van Boxtel SJ , et al. PD-1 blockade augments Th1 and Th17 and suppresses Th2 responses in peripheral blood from patients with prostate and advanced melanoma cancer[J]. J Immunother, 2012,35(2):169-178. DOI: 10.1097/CJI.0b013e318247a4e7. |
[33] | Koenen HJ, Smeets RL, Vink PM , et al. Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells[J]. Blood, 2008,112(6):2340-2352. DOI: 10.1182/blood-2008-01-133967. |
[34] | Kargl J, Busch SE, Yang GH , et al. Neutrophils dominate the immune cell composition in non-small cell lung cancer[J]. Nat Commun, 2017,8:14381. DOI: 10.1038/ncomms14381. |
[35] | Fabre J, Giustiniani J, Garbar C , et al. Targeting the tumor microenvironment: the protumor effects of IL-17 related to cancer type[J]. Int J Mol Sci, 2016, 17(9). pii: E1433. DOI: 10.3390/ijms17091433. |
[36] | Dong Y, Sun Q, Zhang X . PD-1 and its ligands are important immune checkpoints in cancer[J]. Oncotarget, 2017,8(2):2171-2186. DOI: 10.18632/oncotarget.13895. |
[37] | 龙丽, 段赵宁, 蔡海贝 , 等. NFATc1对裸鼠上皮性卵巢癌移植瘤脉管生成的影响[J]. 中国病理生理杂志, 2016,32(2):193-200. DOI: 10.3969/j.issn.1000-4718.2016.02.001. |
[38] | Ratner L, Waldmann TA, Janakiram M , et al. Rapid progression of adult T-cell leukemia-lymphoma after PD-1 inhibitor therapy[J]. N Engl J Med, 2018,378(20):1947-1948. DOI: 10.1056/NEJMc1803181. |
[39] | Du S, McCall N, Park K , et al. Blockade of tumor-expressed PD-1 promotes lung cancer growth[J]. Oncoimmunology, 2018,7(4):e1408747. DOI: 10.1080/2162402X.2017.1408747. |
[40] | Dong ZY, Zhong WZ, Zhang XC , et al. Potential predictive value of TP53 and KRAS mutation status for response to PD-1 blockade immunotherapy in lung adenocarcinoma[J]. Clin Cancer Res, 2017,23(12):3012-3024. DOI: 10.1158/1078-0432. |
[41] | Mariathasan S, Turley SJ, Nickles D , et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells[J]. Nature, 2018,554(7693):544-548. DOI: 10.1038/nature25501. |
[42] | Xiong D, Wang Y, Singavi AK , et al. Immunogenomic landscape contributes to hyperprogressive disease after anti-PD-1 immunotherapy for cancer[J]. iScience, 2018,9:258-277. DOI: 10.1016/j.isci.2018.10.021. |
[43] | Niknafs N, Kim D, Kim R , et al. MuPIT interactive: webserver for mapping variant positions to annotated, interactive 3D structures[J]. Hum Genet, 2013,132(11):1235-1243. DOI: 10.1007/s00439-013-1325-0. |
[44] |
Gossage L, Eisen T, Maher ER . VHL, the story of a tumour suppressor gene[J]. Nat Rev Cancer, 2015,15(1):55-64. DOI: 10.1038/nrc3844.
doi: 10.1038/nrc3844 |
[45] | Kammerer-Jacquet SF, Crouzet L, Brunot A , et al. Independent association of PD-L1 expression with noninactivated VHL clear cell renal cell carcinoma-A finding with therapeutic potential[J]. Int J Cancer, 2017,140(1):142-148. DOI: 10.1002/ijc.30429. |
[1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲. 血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. |
[2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊. 局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[3] | 袁健, 黄燕华. Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. |
[4] | 陈红健, 张素青. 血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. |
[5] | 郭泽浩, 张俊旺. PFDN及其亚基在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2024, 51(6): 350-353. |
[6] | 张百红, 岳红云. 新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. |
[7] | 许凤琳, 吴刚. EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[8] | 王盈, 刘楠, 郭兵. 抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[9] | 张蕊, 褚衍六. 基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[10] | 高凡, 王萍, 杜超, 褚衍六. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[11] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东. ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. |
[12] | 范志鹏, 余静, 胡静, 廖正凯, 徐禹, 欧阳雯, 谢丛华. 炎症标志物的变化趋势对一线接受免疫联合化疗的晚期非小细胞肺癌患者预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(5): 257-266. |
[13] | 刘静, 刘芹, 黄梅. 基于SMOTE算法的食管癌放化疗患者肺部感染的预后模型构建[J]. 国际肿瘤学杂志, 2024, 51(5): 267-273. |
[14] | 杨琳, 路宁, 温华, 张明鑫, 朱琳. 炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[15] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝. 癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||