[1] Fang X, Tan W. Aptamers generated from cellSELEX for molecular medicine: a chemical biology approach[J]. Acc Chem Res, 2010, 43(1): 4857. DOI: 10.1021/ar900101s.
[2] Chen A, Yang S. Replacing antibodies with aptamers in lateral flow immunoassay[J]. Biosens Bioelectron, 2015, 71: 230242. DOI: 10.1016/j.bios.2015.04.041.
[3] Nimjee SM, Rusconi CP, Sullenger BA. Aptamers: an emerging class of therapeutics[J]. Annu Rev Med, 2005, 56: 555583. DOI: 10.1146/annurev.med.56.062904.144915.
[4] Darmostuk M, Rimpelova S, Gbelcova H, et al. Current approaches in SELEX: an update to aptamer selection technology[J]. Biotechnol Adv, 2015, 33(6 Pt 2): 11411161. DOI: 10.1016/j.biotechadv.2015.02.008.
[5] Ye M, Hu J, Peng M, et al. Generating aptamers by cellSELEX for applications in molecular medicine[J]. Int J Mol Sci, 2012, 13(3): 33413353. DOI: 10.3390/ijms13033341.
[6] Cao HY, Yuan AH, Chen W, et al. A DNA aptamer with high affinity and specificity for molecular recognition and targeting therapy of gastric cancer[J]. BMC Cancer, 2014, 14: 699. DOI: 10.1186/1471240714699.
[7] Shi H, He X, Wang K, et al. Activatable aptamer probe for contrastenhanced in vivo cancer imaging based on cell membrane proteintriggered conformation alteration[J]. Proc Natl Acad Sci USA, 2011, 108(10): 39003905. DOI: 10.1073/pnas.1016197108.
[8] Cai S, Li G, Zhang X, et al. A signalon fluorescent aptasensor based on singlestranded DNAsensitized luminescence of Terbium (Ⅲ) for labelfree detection of breast cancer cells[J]. Talanta, 2015, 138: 225230. DOI: 10.1016/j.talanta.2015.02.056.
[9] Ai J, Xu Y, Lou B, et al. Multifunctional AS1411functionalized fluorescent Gold nanoparticles for targeted cancer cell imaging and efficient photodynamic therapy[J]. Talanta, 2014, 118: 5460. DOI: 10.1016/j.talanta.2013.09.062.
[10] Zhu Y, Chandra P, Shim YB. Ultrasensitive and selective electrochemical diagnosis of breast cancer based on a hydrazineAu nanoparticleaptamer bioconjugate[J]. Anal Chem, 2013, 85(2): 10581064. DOI: 10.1021/ac302923k.
[11] Kong RM, Ding L, Wang Z, et al. A novel aptamerfunctionalized MoS2 nanosheet fluorescent biosensor for sensitive detection of prostate specific antigen[J]. Anal Bioanal Chem, 2015, 407(2): 369377. DOI: 10.1007/s0021601482679.
[12] Lee J, Kang HJ, Jang H, et al. Simultaneous imaging of two different cancer biomarkers using aptamerconjugated quantum dots[J]. Sensors (Basel), 2015, 15(4): 85958604. DOI: 10.3390/s150408595.
[13] Hwang do W, Ko HY, Lee JH, et al. A nucleolintargeted multimodal nanoparticle imaging probe for tracking cancer cells using an aptamer[J]. J Nucl Med, 2010, 51(1): 98105. DOI: 10.2967/jnumed.109.069880.
[14] Zhou J, Rossi JJ. Cellspecific aptamermediated targeted drug delivery[J]. Oligonucleotides, 2011, 21(1): 110. DOI: 10.1089/oli.2010.0264.
[15] Li N, Nguyen HH, Byrom M, et al. Inhibition of cell proliferation by an antiEGFR aptamer[J]. PLoS One, 2011, 6(6): e20299. DOI: 10.1371/journal.pone.0020299.
[16] Dassie JP, Hernandez LI, Thomas GS, et al. Targeted inhibition of prostate cancer metastases with an RNA aptamer to prostatespecific membrane antigen[J]. Mol Ther, 2014, 22(11): 19101922. DOI: 10.1038/mt.2014.117.
[17] Zamay TN, Kolovskaya OS, Glazyrin YE, et al. DNAaptamer targeting vimentin for tumor therapy in vivo[J]. Nucleic Acid Ther, 2014, 24(2): 160170. DOI: 10.1089/nat.2013.0471.
[18] Xiang D, Shigdar S, Qiao G, et al. Nucleic acid aptamerguided cancer therapeutics and diagnostics: the next Generation of cancer medicine[J]. Theranostics, 2015, 5(1): 2342. DOI: 10.7150/thno.10202.
[19] Xing H, Tang L, Yang X, et al. Selective delivery of an anticancer drug with aptamerfunctionalized liposomes to breast cancer cells in vitro and in vivo[J]. J Mater Chem B Mater Biol Med, 2013, 1(39): 52885297. DOI: 10.1039/C3TB20412J.
[20] Zhou C, Chen T, Wu C, et al. Aptamer CaCO3 nanostructures: a facile, pHresponsive, specific platform for targeted anticancer theranostics[J]. Chem Asian J, 2015, 10(1): 166171. DOI: 10.1002/asia.201403115.
[21] Wang K, Yao H, Meng Y, et al. Specific aptamerconjugated mesoporous silicacarbon nanoparticles for HER2targeted chemophotothermal combined therapy[J]. Acta Biomater, 2015, 16: 196205. DOI: DOI: 10.1016/j.actbio.2015.01.002.
[22] Thiel KW, Hernandez LI, Dassie JP, et al. Delivery of chemosensitizing siRNAs to HER2+breast cancer cells using RNA aptamers[J]. Nucleic Acids Res, 2012, 40(13): 63196337. DOI: 10.1093/nar/gks294.
[23] Lai WY, Wang WY, Chang YC, et al. Synergistic inhibition of lung cancer cell invasion, tumor growth and angiogenesis using aptamersiRNA chimeras[J]. Biomaterials, 2014, 35(9): 29052914. DOI: 10.1016/j.biomaterials.2013.12.054.
[24] Dai F, Zhang Y, Zhu X, et al. Anticancer role of MUC1 aptamermiR29b chimera in epithelial ovarian carcinoma cells through regulation of PTEN methylation[J]. Target Oncol, 2012, 7(4): 217225. DOI: 10.1007/s1152301202367. |