国际肿瘤学杂志 ›› 2024, Vol. 51 ›› Issue (12): 779-784.doi: 10.3760/cma.j.cn371439-20240727-00132
周名睿1, 戚孟琪2, 张妍妍1, 史易暖1, 岳川1, 张妍1, 刘宪强1, 张岩1()
收稿日期:
2024-07-27
修回日期:
2024-09-01
出版日期:
2024-12-08
发布日期:
2025-01-07
通讯作者:
张岩
E-mail:285951758@qq.com
Zhou Mingrui1, Qi Mengqi2, Zhang Yanyan1, Shi Yinuan1, Yue Chuan1, Zhang Yan1, Liu Xianqiang1, Zhang Yan1()
Received:
2024-07-27
Revised:
2024-09-01
Online:
2024-12-08
Published:
2025-01-07
Contact:
Zhang Yan
E-mail:285951758@qq.com
摘要:
乳腺癌作为女性发病率极高的恶性肿瘤,严重危害女性的生命健康与安全,其发病机制及治疗策略仍是目前研究的热点和难点。越来越多的研究表明,乳腺癌的发生发展与肠道组织、乳腺组织中的微生物群落密切相关,人体组织中的微生物群落可通过多种途径及机制促进或抑制乳腺癌的发生。明确微生物群落与乳腺癌的关系将为乳腺癌的预防和综合治疗提供新的方向。
周名睿, 戚孟琪, 张妍妍, 史易暖, 岳川, 张妍, 刘宪强, 张岩. 人体组织中微生物群落与乳腺癌关系的研究进展[J]. 国际肿瘤学杂志, 2024, 51(12): 779-784.
Zhou Mingrui, Qi Mengqi, Zhang Yanyan, Shi Yinuan, Yue Chuan, Zhang Yan, Liu Xianqiang, Zhang Yan. Research progress in the relationship between microbial communities and breast cancer in human tissues[J]. Journal of International Oncology, 2024, 51(12): 779-784.
[1] | Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834. |
[2] | Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024[J]. CA Cancer J Clin, 2024, 74(1): 12-49. DOI: 10.3322/caac.21820. |
[3] | Sukumar J, Kassem M, Agnese D, et al. Concurrent germline BRCA1, BRCA2, and CHEK2 pathogenic variants in hereditary breast cancer: a case series[J]. Breast Cancer Res Treat, 2021, 186(2): 569-575. DOI: 10.1007/s10549-021-06095-w. |
[4] | Schluter J, Peled JU, Taylor BP, et al. The gut microbiota is associated with immune cell dynamics in humans[J]. Nature, 2020, 588(7837): 303-307. DOI: 10.1038/s41586-020-2971-8. |
[5] |
Wu Y, Zhang Y, Zhang W, et al. The tremendous clinical potential of the microbiota in the treatment of breast cancer: the next frontier[J]. J Cancer Res Clin Oncol, 2023, 149(13): 12513-12534. DOI: 10.1007/s00432-023-05014-4.
pmid: 37382675 |
[6] | Bernardo G, Le Noci V, Di Modica M, et al. The emerging role of the microbiota in breast cancer progression[J]. Cells, 2023, 12(15): 1945. DOI: 10.3390/cells12151945. |
[7] | Perler BK, Friedman ES, Wu GD. The role of the gut microbiota in the relationship between diet and human health[J]. Annu Rev Physiol, 2023, 85: 449-468. DOI: 10.1146/annurev-physiol-031522-092054. |
[8] | Ahn J, Hayes RB. Environmental influences on the human microbiome and implications for noncommunicable disease[J]. Annu Rev Public Health, 2021, 42: 277-292. DOI: 10.1146/annurev-publhealth-012420-105020. |
[9] | Wu AH, Tseng C, Vigen C, et al. Gut microbiome associations with breast cancer risk factors and tumor characteristics: a pilot study[J]. Breast Cancer Res Treat, 2020, 182(2): 451-463. DOI: 10.1007/s10549-020-05702-6. |
[10] |
Nejman D, Livyatan I, Fuks G, et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria[J]. Science, 2020, 368(6494): 973-980. DOI: 10.1126/science.aay9189.
pmid: 32467386 |
[11] |
Wang N, Sun T, Xu J. Tumor-related microbiome in the breast microenvironment and breast cancer[J]. J Cancer, 2021, 12(16): 4841-4848. DOI: 10.7150/jca.58986.
pmid: 34234854 |
[12] | Gomaa EZ. Human gut microbiota/microbiome in health and diseases: a review[J]. Antonie Van Leeuwenhoek, 2020, 113(12): 2019-2040. DOI: 10.1007/s10482-020-01474-7. |
[13] | Song X, Wei C, Li X. The relationship between microbial community and breast cancer[J]. Front Cell Infect Microbiol, 2022, 12: 849022. DOI: 10.3389/fcimb.2022.849022. |
[14] | Zhang Z, Tang H, Chen P, et al. Demystifying the manipulation of host immunity, metabolism, and extraintestinal tumors by the gut microbiome[J]. Signal Transduct Target Ther, 2019, 4: 41. DOI: 10.1038/s41392-019-0074-5. |
[15] | Komorowski AS, Pezo RC. Untapped "-omics": the microbial metagenome, estrobolome, and their influence on the development of breast cancer and response to treatment[J]. Breast Cancer Res Treat, 2020, 179(2): 287-300. DOI: 10.1007/s10549-019-05472-w. |
[16] | Wu Z, Pfeiffer RM, Byrd DA, et al. Associations of circulating estrogens and estrogen metabolites with fecal and oral microbiome in postmenopausal women in the Ghana breast health study[J]. Microbiol Spectr, 2023, 11(4): e0157223. DOI: 10.1128/spectrum.01572-23. |
[17] | Simin J, Tamimi RM, Engstrand L, et al. Antibiotic use and the risk of breast cancer: a systematic review and dose-response Meta-analysis[J]. Pharmacol Res, 2020, 160: 105072. DOI: 10.1016/j.phrs.2020.105072. |
[18] | Xiao L, Chi D, Sheng G, et al. Inhibitory effects of UDP-glucuronosyltransferase(UGT) typical ligands against E. coli beta-glucuronidase(GUS)[J]. RSC Adv, 2020, 10(39): 22966-22971. DOI: 10.1039/d0ra02311f. |
[19] | Munteanu C, Schwartz B. Interactions between dietary antioxidants, dietary fiber and the gut microbiome: their putative role in inflammation and cancer[J]. Int J Mol Sci, 2024, 25(15): 8250. DOI: 10.3390/ijms25158250. |
[20] | Nakatsu G, Andreeva N, MacDonald MH, et al. Interactions between diet and gut microbiota in cancer[J]. Nat Microbiol, 2024, 9(7): 1644-1654. DOI: 10.1038/s41564-024-01736-4. |
[21] | Arnone AA, Wilson AS, Soto-Pantoja DR, et al. Diet modulates the gut microbiome, metabolism, and mammary gland inflammation to influence breast cancer risk[J]. Cancer Prev Res (Phila), 2024, 17(9): 415-428. DOI: 10.1158/1940-6207.CAPR-24-0055. |
[22] |
Dutta RK, Abu YF, Tao J, et al. Altered gut microbiome drives heightened pain sensitivity in a murine model of metastatic triple-negative breast cancer[J]. Am J Cancer Res, 2024, 14(1): 274-299. DOI: 10.62347/LUJF9626.
pmid: 38323292 |
[23] | Gur C, Maalouf N, Shhadeh A, et al. Fusobacterium nucleatum supresses anti-tumor immunity by activating CEACAM1[J]. Oncoimmunology, 2019, 8(6): e1581531. DOI: 10.1080/2162402X.2019.1581531. |
[24] | Dohrn G. Gut microbes linked to fatty diet drive tumour growth[J]. Nature, 2024, In press. DOI: 10.1038/d41586-024-01443-4. |
[25] | Sampsell K, Hao D, Reimer RA. The gut microbiota: a potential gateway to improved health outcomes in breast cancer treatment and survivorship[J]. Int J Mol Sci, 2020, 21(23): 9239. DOI: 10.3390/ijms21239239. |
[26] |
Raza MH, Gul K, Arshad A, et al. Microbiota in cancer development and treatment[J]. J Cancer Res Clin Oncol, 2019, 145(1): 49-63. DOI: 10.1007/s00432-018-2816-0.
pmid: 30542789 |
[27] |
Eslami-S Z, Majidzadeh-A K, Halvaei S, et al. Microbiome and breast cancer: new role for an ancient population[J]. Front Oncol, 2020, 10: 120. DOI: 10.3389/fonc.2020.00120.
pmid: 32117767 |
[28] | Jaye K, Li CG, Chang D, et al. The role of key gut microbial metabolites in the development and treatment of cancer[J]. Gut Microbes, 2022, 14(1): 2038865. DOI: 10.1080/19490976.2022.2038865. |
[29] | Su X, Gao Y, Yang R. Gut microbiota derived bile acid metabolites maintain the homeostasis of gut and systemic immunity[J]. Front Immunol, 2023, 14: 1127743. DOI: 10.3389/fimmu.2023.1127743. |
[30] | Urbaniak C, Gloor GB, Brackstone M, et al. The microbiota of breast tissue and its association with breast cancer[J]. Appl Environ Microbiol, 2016, 82(16): 5039-5048. DOI: 10.1128/AEM.01235-16. |
[31] | Meng Z, Ye Z, Zhu P, et al. New developments and opportunities of microbiota in treating breast cancers[J]. Front Microbiol, 2022, 13: 818793. DOI: 10.3389/fmicb.2022.818793. |
[32] |
Wong CC, Yu J. Gut microbiota in colorectal cancer development and therapy[J]. Nat Rev Clin Oncol, 2023, 20(7): 429-452. DOI: 10.1038/s41571-023-00766-x.
pmid: 37169888 |
[33] | Zhang YX, Liang ZZ, Li YQ, et al. Association between weight change and breast cancer prognosis[J]. Breast Cancer Res Treat, 2022, 193(3): 677-684. DOI: 10.1007/s10549-022-06592-6. |
[34] | Summer M, Sajjad A, Ali S, et al. Exploring the underlying correlation between microbiota, immune system, hormones, and inflammation with breast cancer and the role of probiotics, prebiotics and postbiotics[J]. Arch Microbiol, 2024, 206(4): 145. DOI: 10.1007/s00203-024-03868-x. |
[35] | Ma C, Wasti S, Huang S, et al. The gut microbiome stability is altered by probiotic ingestion and improved by the continuous supplementation of galactooligosaccharide[J]. Gut Microbes, 2020, 12(1): 1785252. DOI: 10.1080/19490976.2020.1785252. |
[36] | Mendoza L. Potential effect of probiotics in the treatment of breast cancer[J]. Oncol Rev, 2019, 13(2): 422. DOI: 10.4081/oncol.2019.422. |
[37] | Vincenzi A, Goettert MI, Volken de Souza CF. An evaluation of the effects of probiotics on tumoral necrosis factor (TNF-α) signa-ling and gene expression[J]. Cytokine Growth Factor Rev, 2021, 57: 27-38. DOI: 10.1016/j.cytogfr.2020.10.004. |
[38] | Perales-Puchalt A, Perez-Sanz J, Payne KK, et al. Frontline science: microbiota reconstitution restores intestinal integrity after cisplatin therapy[J]. J Leukoc Biol, 2018, 103(5): 799-805. DOI: 10.1002/JLB.5HI1117-446RR. |
[39] | Fessler J, Matson V, Gajewski TF. Exploring the emerging role of the microbiome in cancer immunotherapy[J]. J Immunother Cancer, 2019, 7(1): 108. DOI: 10.1186/s40425-019-0574-4. |
[40] |
Vafa S, Zarrati M, Malakootinejad M, et al. Calorie restriction and synbiotics effect on quality of life and edema reduction in breast cancer-related lymphedema, a clinical trial[J]. Breast, 2020, 54: 37-45. DOI: 10.1016/j.breast.2020.08.008.
pmid: 32898787 |
[41] | Thet D, Areepium N, Siritientong T. Effects of probiotics on chemotherapy-induced diarrhea[J]. Nutr Cancer, 2023, 75(10): 1811-1821. DOI: 10.1080/01635581.2023.2267779. |
[42] |
Shiao SL, Kershaw KM, Limon JJ, et al. Commensal bacteria and fungi differentially regulate tumor responses to radiation therapy[J]. Cancer Cell, 2021, 39(9): 1202-1213, e6. DOI: 10.1016/j.ccell.2021.07.002.
pmid: 34329585 |
[43] |
Juan Z, Chen J, Ding B, et al. Probiotic supplement attenuates chemotherapy-related cognitive impairment in patients with breast cancer: a randomised, double-blind, and placebo-controlled trial[J]. Eur J Cancer, 2022, 161: 10-22. DOI: 10.1016/j.ejca.2021.11.006.
pmid: 34896904 |
[44] | Mirzadeh MA, Eslami M, Ghanbari A, et al. Coadministration of doxorubicin with vitamin D3, Lactobacillus acidophilus, and Lactobacillus casei in the 4T1 mouse model of breast cancer: anticancer and enteroprotective effects[J]. Med Oncol, 2024, 41(5): 111. DOI: 10.1007/s12032-024-02346-0. |
[45] |
Federici S, Kredo-Russo S, Valdés-Mas R, et al. Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation[J]. Cell, 2022, 185(16): 2879-2898, e24. DOI: 10.1016/j.cell.2022.07.003.
pmid: 35931020 |
[46] | Álvarez-Mercado AI, Del Valle Cano A, Fernández MF, et al. Gut microbiota and breast cancer: the dual role of microbes[J]. Cancers (Basel), 2023, 15(2): 443. DOI: 10.3390/cancers15020443. |
[47] | Yi DY, Kim SY. Human breast milk composition and function in human health: from nutritional components to microbiome and microRNAs[J]. Nutrients, 2021, 13(9): 3094. DOI: 10.3390/nu13093094. |
[48] |
Parida S, Wu S, Siddharth S, et al. A procarcinogenic colon microbe promotes breast tumorigenesis and metastatic progression and concomitantly activates notch and β-catenin axes[J]. Cancer Discov, 2021, 11(5): 1138-1157. DOI: 10.1158/2159-8290.CD-20-0537.
pmid: 33408241 |
[49] | Parhi L, Alon-Maimon T, Sol A, et al. Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression[J]. Nat Commun, 2020, 11(1): 3259. DOI: 10.1038/s41467-020-16967-2. |
[50] | Devoy C, Flores Bueso Y, Tangney M. Understanding and harnessing triple-negative breast cancer-related microbiota in oncology[J]. Front Oncol, 2022, 12: 1020121. DOI: 10.3389/fonc.2022.1020121. |
[51] | Bose D, Banerjee S, Singh RK, et al. Vascular endothelial growth factor encoded by Parapoxviruses can regulate metabolism and survival of triple negative breast cancer cells[J]. Cell Death Dis, 2020, 11(11): 996. DOI: 10.1038/s41419-020-03203-4. |
[52] | Banerjee S, Wei Z, Tian T, et al. Prognostic correlations with the microbiome of breast cancer subtypes[J]. Cell Death Dis, 2021, 12(9): 831. DOI: 10.1038/s41419-021-04092-x. |
[53] | Zhang Y, Zhou M, Sun J. A novel prognostic signature and potential therapeutic drugs based on tumor immune microenvironment characterization in breast cancer[J]. Heliyon, 2023, 9(10): e20798. DOI: 10.1016/j.heliyon.2023.e20798. |
[54] | Naderi N, Mosahebi A, Williams NR. Microorganisms and breast cancer: an in-depth analysis of clinical studies[J]. Pathogens, 2023, 13(1): 6. DOI: 10.3390/pathogens13010006. |
[1] | 韩晓旭, 张楠, 刘帅. 孕烷X受体在乳腺癌耐药中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(9): 590-594. |
[2] | 孟繁明. 伊尼妥单抗联合卡培他滨治疗曲妥珠单抗经治的HER2阳性晚期乳腺癌1例[J]. 国际肿瘤学杂志, 2024, 51(8): 538-541. |
[3] | 赵彪, 蒲琴, 袁美芳, 马立双, 李瀚, 杨毅, 孙朝细. 基于内缘切线野的调强放疗与容积弧形调强放疗在左侧乳腺癌保乳术后放疗中的剂量学研究[J]. 国际肿瘤学杂志, 2024, 51(7): 441-447. |
[4] | 刘琴, 张强强, 杨继元, 胡艳. 晚期前列腺癌双侧乳腺和腋窝淋巴结转移1例[J]. 国际肿瘤学杂志, 2024, 51(7): 478-480. |
[5] | 王盈, 刘楠, 郭兵. 抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[6] | 张蕊, 褚衍六. 基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[7] | 高凡, 王萍, 杜超, 褚衍六. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[8] | 萨蔷, 徐航程, 王佳玉. 乳腺癌免疫治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 227-234. |
[9] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙. 肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. |
[10] | 陈波光, 王苏贵, 张永杰. 血清胆碱酯酶与炎症标志物在ⅠA~ⅢA期乳腺癌预后中的作用[J]. 国际肿瘤学杂志, 2024, 51(2): 73-82. |
[11] | 檀双秀, 张一丹, 王颖, 于鹏丽, 孔文韬, 姚静, 陈桥梁. 常规超声联合剪切波弹性成像鉴别非肿块型导管原位癌和浸润性乳腺癌的价值[J]. 国际肿瘤学杂志, 2024, 51(12): 743-748. |
[12] | 朱彬, 万涛, 许华, 贾浩, 陈士新. 基于多模态MRI特征构建的预测模型用于BI-RADS 4类乳腺肿瘤良恶性鉴别诊断价值分析[J]. 国际肿瘤学杂志, 2024, 51(11): 678-683. |
[13] | 陈坤燕, 杜娟, 季雨伟, 顾卫卫, 彭涵智. 伊立替康联合XELOX方案对老年结直肠癌患者机体免疫状态、肠道微生态的影响及预后风险分析[J]. 国际肿瘤学杂志, 2024, 51(11): 690-695. |
[14] | 陶晋, 阚俊楠, 杨彩霞, 刘岩, 吕奕洁, 魏俊辉, 李祥林. 锰基纳米材料在乳腺癌诊疗中的应用进展[J]. 国际肿瘤学杂志, 2024, 51(10): 645-649. |
[15] | 顾花艳, 朱腾, 郭贵龙. 乳房微生物群与乳腺癌:现状与未来[J]. 国际肿瘤学杂志, 2024, 51(1): 55-58. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||