国际肿瘤学杂志 ›› 2024, Vol. 51 ›› Issue (12): 774-778.doi: 10.3760/cma.j.cn371439-20240702-00131
收稿日期:
2024-07-02
修回日期:
2024-07-23
出版日期:
2024-12-08
发布日期:
2025-01-07
通讯作者:
黄国福
E-mail:guofuhuang2023@hotmail.com
基金资助:
Wang Li1, Xiao Han1, Huang Guofu2()
Received:
2024-07-02
Revised:
2024-07-23
Online:
2024-12-08
Published:
2025-01-07
Contact:
Huang Guofu
E-mail:guofuhuang2023@hotmail.com
Supported by:
摘要:
环状RNA(circRNA)在三阴性乳腺癌(TNBC)中展现出巨大的应用潜力。异常表达的circRNA通过作为微RNA海绵、调控基因表达、与功能蛋白相互作用、编码短肽或蛋白质调控TNBC细胞增殖、凋亡、侵袭、转移及耐药等生物学过程,参与TNBC的发生发展。circRNA是TNBC早期诊断及预后评估的新兴生物标志物,同时也是具有潜在临床价值的治疗新靶点。进一步阐明circRNA在TNBC中的复杂作用机制,可为开发TNBC的精准化治疗策略提供重要的理论依据。
王莉, 肖翰, 黄国福. 环状RNA在三阴性乳腺癌中的作用机制及临床意义[J]. 国际肿瘤学杂志, 2024, 51(12): 774-778.
Wang Li, Xiao Han, Huang Guofu. Mechanism of action and clinical significance of circular RNA in triple negative breast cancer[J]. Journal of International Oncology, 2024, 51(12): 774-778.
[1] | Tian T, Zhao Y, Zheng J, et al. Circular RNA: a potential diagnostic, prognostic, and therapeutic biomarker for human triple-negative breast cancer[J]. Mol Ther Nucleic Acids, 2021, 26: 63-80. DOI: 10.1016/j.omtn.2021.06.017. |
[2] | Liu J, Kong L, Bian W, et al. CircRNA_0001006 predicts prognosis and regulates cellular processes of triple-negative breast cancer via miR-424-5p[J]. Cell Div, 2023, 18(1): 7. DOI: 10.1186/s13008-023-00089-4. |
[3] | Weidle UH, Birzele F. Triple-negative breast cancer: identification of circRNAs with efficacy in preclinical in vivo models[J]. Cancer Genomics Proteomics, 2023, 20(2): 117-131. DOI: 10.21873/cgp.20368. |
[4] | He X, Xu T, Hu W, et al. Circular RNAs: their role in the pathogenesis and orchestration of breast cancer[J]. Front Cell Dev Biol, 2021, 9: 647736. DOI: 10.3389/fcell.2021.647736. |
[5] | Liu CX, Chen LL. Circular RNAs: characterization, cellular roles, and applications[J]. Cell, 2022, 185(12): 2016-2034. DOI: 10.1016/j.cell.2022.04.021. |
[6] |
Foruzandeh Z, Dorabadi DG, Sadeghi F, et al. Circular RNAs as novel biomarkers in triple-negative breast cancer: a systematic review[J]. Mol Biol Rep, 2022, 49(10): 9825-9840. DOI: 10.1007/s11033-022-07502-1.
pmid: 35534586 |
[7] |
Gong G, She J, Fu D, et al. CircUBR5 acts as a ceRNA for miR-1179 to up-regulate UBR5 and to promote malignancy of triple-negative breast cancer[J]. Am J Cancer Res, 2022, 12(6): 2539-2557.
pmid: 35812044 |
[8] |
Darbeheshti F, Mahdiannasser M, Noroozi Z, et al. Circular RNA-associated ceRNA network involved in HIF-1 signalling in triple-negative breast cancer: circ_0047303 as a potential key regulator[J]. J Cell Mol Med, 2021, 25(24): 11322-11332. DOI: 10.1111/jcmm.17066.
pmid: 34791795 |
[9] |
Zou Y, Zheng S, Xiao W, et al. circRAD18 sponges miR-208a/3164 to promote triple-negative breast cancer progression through regulating IGF1 and FGF2 expression[J]. Carcinogenesis, 2019, 40(12): 1469-1479. DOI: 10.1093/carcin/bgz071.
pmid: 31001629 |
[10] |
Hu J, Ji C, Hua K, et al. Hsa_circ_0091074 regulates TAZ expression via microRNA‑1297 in triple negative breast cancer cells[J]. Int J Oncol, 2020, 56(5): 1314-1326. DOI: 10.3892/ijo.2020.5000.
pmid: 32319577 |
[11] | Wang L, Zhou Y, Jiang L, et al. CircWAC induces chemotherapeutic resistance in triple-negative breast cancer by targeting miR-142, upregulating WWP1 and activating the PI3K/AKT pathway[J]. Mol Cancer, 2021, 20(1): 43. DOI: 10.1186/s12943-021-01332-8. |
[12] | Xing Z, Wang R, Wang X, et al. CircRNA circ-PDCD11 promotes triple-negative breast cancer progression via enhancing aerobic glycolysis[J]. Cell Death Discov, 2021, 7(1): 218. DOI: 10.1038/s41420-021-00604-y. |
[13] | Huang Y, Zheng S, Lin Y, et al. Circular RNA circ-ERBB2 elevates the warburg effect and facilitates triple-negative breast cancer growth by the microRNA 136-5p/pyruvate dehydrogenase kinase 4 axis[J]. Mol Cell Biol, 2021, 41(10): e0060920. DOI: 10.1128/MCB.00609-20. |
[14] | He Q, Hao Q, Wu Y, et al. CircRAD54L2 promotes triple-negative breast cancer progression by regulating the miR-888 family/PDK1 axis[J]. Life Sci, 2023, 312: 121128. DOI: 10.1016/j.lfs.2022.121128. |
[15] |
Dou D, Ren X, Han M, et al. Circ_0008039 supports breast cancer cell proliferation, migration, invasion, and glycolysis by regulating the miR-140-3p/SKA2 axis[J]. Mol Oncol, 2021, 15(2): 697-709. DOI: 10.1002/1878-0261.12862.
pmid: 33244865 |
[16] | Zan X, Li W, Wang G, et al. Circ-CSNK1G1 promotes cell proliferation, migration, invasion and glycolysis metabolism during triple-negative breast cancer progression by modulating the miR-28-5p/LDHA pathway[J]. Reprod Biol Endocrinol, 2022, 20(1): 138. DOI: 10.1186/s12958-022-00998-z. |
[17] | Huang J, Deng X, Chen X, et al. Circular RNA KIF4A promotes liver metastasis of breast cancer by reprogramming glucose metabolism[J]. J Oncol, 2022, 2022: 8035083. DOI: 10.1155/2022/8035083. |
[18] | Lu C, Shi W, Hu W, et al. Endoplasmic reticulum stress promotes breast cancer cells to release exosomes circ_0001142 and induces M2 polarization of macrophages to regulate tumor progression[J]. Pharmacol Res, 2022: 106098. DOI: 10.1016/j.phrs.2022.106098. |
[19] | Xu X, Zhang J, Tian Y, et al. CircRNA inhibits DNA damage repair by interacting with host gene[J]. Mol Cancer, 2020, 19(1): 128. DOI: 10.1186/s12943-020-01246-x. |
[20] | Turco C, Esposito G, Iaiza A, et al. MALAT1-dependent hsa_ circ_0076611 regulates translation rate in triple-negative breast cancer[J]. Commun Biol, 2022, 5(1): 598. DOI: 10.1038/s42003-022-03539-x. |
[21] |
Chen T, Wang X, Li C, et al. CircHIF1A regulated by FUS accelerates triple-negative breast cancer progression by modulating NFIB expression and translocation[J]. Oncogene, 2021, 40(15): 2756-2771. DOI: 10.1038/s41388-021-01739-z.
pmid: 33714984 |
[22] | Liu P, Wang Z, Ou X, et al. The FUS/circEZH2/KLF5/ feedback loop contributes to CXCR4-induced liver metastasis of breast cancer by enhancing epithelial-mesenchymal transition[J]. Mol Cancer, 2022, 21(1): 198. DOI: 10.1186/s12943-022-01653-2. |
[23] | Zheng Y, Ren S, Zhang Y, et al. Circular RNA circWWC3 augments breast cancer progression through promoting M2 macrophage polarization and tumor immune escape via regulating the expression and secretion of IL-4[J]. Cancer Cell Int, 2022, 22(1): 264. DOI: 10.1186/s12935-022-02686-9. |
[24] | Yang B, Wang YW, Zhang K. Interactions between circRNA and protein in breast cancer[J]. Gene, 2024, 895: 148019. DOI: 10.1016/j.gene.2023.148019. |
[25] | Wang X, Xing L, Yang R, et al. The circACTN4 interacts with FUBP1 to promote tumorigenesis and progression of breast cancer by regulating the expression of proto-oncogene MYC[J]. Mol Cancer, 2021, 20(1): 91. DOI: 10.1186/s12943-021-01383-x. |
[26] | Chen D, Zeng S, Qiu H, et al. Circ-FOXO3 inhibits triple-negative breast cancer growth and metastasis via regulating WHSC1-H3K36me2-Zeb2 axis[J]. Cell Signal, 2024, 117: 111079. DOI: 10.1016/j.cellsig.2024.111079. |
[27] | Song X, Wang X, Chen X, et al. SRSF1 inhibits ferroptosis and reduces cisplatin chemosensitivity of triple-negative breast cancer cells through the circSEPT9/GCH1 axis[J]. J Proteomics, 2024, 292: 105055. DOI: 10.1016/j.jprot.2023.105055. |
[28] | Gao H, Tuluhong D, Li X, et al. CircSNX25 mediated by SP1 promotes the carcinogenesis and development of triple-negative breast cancer[J]. Cell Signal, 2023, 109: 110776. DOI: 10.1016/j.cellsig.2023.110776. |
[29] | Luo P, Gong Y, Weng J, et al. CircKIF4A combines EIF4A3 to stabilize SDC1 expression to activate c-src/FAK and promotes TNBC progression[J]. Cell Signal, 2023, 108: 110690. DOI: 10.1016/j.cellsig.2023.110690. |
[30] |
Lan J, Wang L, Cao J, et al. circBRAF promotes the progression of triple-negative breast cancer through modulating methylation by recruiting KDM4B to histone H3K9me3 and IGF2BP3 to mRNA[J]. Am J Cancer Res, 2024, 14(5): 2020-2036. DOI: 10.62347/OOLG5765.
pmid: 38859856 |
[31] | Liang YR, Ye FZ, Luo D, et al. Exosomal circSIPA1L3-mediated intercellular communication contributes to glucose metabolic reprogramming and progression of triple negative breast cancer[J]. Mol Cancer, 2024, 23(1): 125. DOI: 10.1186/s12943-024-02037-4. |
[32] | Wang ST, Wang YF, Wang Y, et al. Myc derived circRNA promotes triple-negative breast cancer progression via reprogramming fatty acid metabolism[J]. Discov Oncol, 2023, 14(1): 67. DOI: 10.1007/s12672-023-00679-2. |
[33] | Wang Z, Li Y, Yang J, et al. CircCFL1 promotes TNBC stemness and immunoescape via deacetylation-mediated c-Myc deubiquitylation to facilitate mutant TP53 transcription[J]. Adv Sci (Weinh), 2024: e2404628. DOI: 10.1002/advs.202404628. |
[34] | Lu Y, Li Z, Lin C, et al. Translation role of circRNAs in cancers[J]. J Clin Lab Anal, 2021, 35(7): e23866. DOI: 10.1002/jcla.23866. |
[35] | Ye F, Gao G, Zou Y, et al. circFBXW7 inhibits malignant progression by sponging miR-197-3p and encoding a 185-aa protein in triple-negative breast cancer[J]. Mol Ther Nucleic Acids, 2019, 18: 88-98. DOI: 10.1016/j.omtn.2019.07.023. |
[36] | Wang X, Jian W, Luo Q, et al. CircSEMA4B inhibits the progression of breast cancer by encoding a novel protein SEMA4B-211aa and regulating AKT phosphorylation[J]. Cell Death Dis, 2022, 13(9): 794. DOI: 10.1038/s41419-022-05246-1. |
[37] | Song R, Guo P, Ren X, et al. A novel polypeptide CAPG-171aa encoded by circCAPG plays a critical role in triple-negative breast cancer[J]. Mol Cancer, 2023, 22(1): 104. DOI: 10.1186/s12943-023-01806-x. |
[38] | Li Y, Wang Z, Su P, et al. circ-EIF6 encodes EIF6-224aa to promote TNBC progression via stabilizing MYH9 and activating the Wnt/beta-catenin pathway[J]. Mol Ther, 2022, 30(1): 415-430. DOI: 10.1016/j.ymthe.2021.08.026. |
[39] | Li YM, Wang ZK, Yang JW, et al. CircTRIM1 encodes TRIM1-269aa to promote chemoresistance and metastasis of TNBC via enhancing CaM-dependent MARCKS translocation and PI3K/AKT/mTOR activation[J]. Mol Cancer, 2024, 23(1): 102. DOI: 10.1186/s12943-024-02019-6. |
[40] | Darbeheshti F, Zokaei E, Mansoori Y, et al. Circular RNA hsa_circ_0044234 as distinct molecular signature of triple negative breast cancer: a potential regulator of GATA3[J]. Cancer Cell Int, 2021, 21(1): 312. DOI: 10.1186/s12935-021-02015-6. |
[41] |
Wang F, Lu Q, Yu H, et al. The circular RNA circFGFR4 facilitates resistance to anti-PD-1 of triple-negative breast cancer by targeting the miR-185-5p/CXCR4 axis[J]. Cancer Manag Res, 2023, 15: 825-835. DOI: 10.2147/CMAR.S411901.
pmid: 37601820 |
[42] | Wang X, Chen T, Li C, et al. CircRNA-CREIT inhibits stress granule assembly and overcomes doxorubicin resistance in TNBC by destabilizing PKR[J]. J Hematol Oncol, 2022, 15(1): 122. DOI: 10.1186/s13045-022-01345-w. |
[43] | Song H, Zhao Z, Ma L, et al. Novel exosomal circEGFR facilitates triple negative breast cancer autophagy via promoting TFEB nuclear trafficking and modulating miR-224-5p/ATG13/ULK1 feedback loop[J]. Oncogene, 2024, 43(11): 821-836. DOI: 10.1038/s41388-024-02950-4. |
[44] | Yang SJ, Wang DD, Zhong SL, et al. Tumor-derived exosomal circPSMA1 facilitates the tumorigenesis, metastasis, and migration in triple-negative breast cancer (TNBC) through miR-637/Akt1/β-catenin (cyclin D1) axis[J]. Cell Death Dis, 2021, 12(5): 420. DOI: 10.1038/s41419-021-03680-1. |
[45] | Huang S, Xie J, Lei S, et al. CircDUSP1 regulates tumor growth, metastasis, and paclitaxel sensitivity in triple-negative breast cancer by targeting miR-761/DACT2 signaling axis[J]. Mol Carcinog, 2023, 62(4): 450-463. DOI: 10.1002/mc.23498. |
[46] | Li C, Wang X, Chen T, et al. Huaier induces immunogenic cell death via CircCLASP1/PKR/eIF2α signaling pathway in triple negative breast cancer[J]. Front Cell Dev Biol, 2022, 10: 913824. DOI: 10.3389/fcell.2022.913824. |
[47] | Li J, Ma M, Yang X, et al. Circular HER2 RNA positive triple negative breast cancer is sensitive to pertuzumab[J]. Mol Cancer, 2020, 19(1): 142. DOI: 10.1186/s12943-020-01259-6. |
[48] | Chen J, Shi P, Zhang J, et al. CircRNA_0044556 diminishes the sensitivity of triple‑negative breast cancer cells to adriamycin by sponging miR‑145 and regulating NRAS[J]. Mol Med Rep, 2022, 25(2): 51. DOI: 10.3892/mmr.2021.12567. |
[49] |
Wang L, Yang X, Zhou F, et al. Circular RNA UBAP2 facilitates the cisplatin resistance of triple-negative breast cancer via microRNA-300/anti-silencing function 1B histone chaperone/PI3K/AKT/mTOR axis[J]. Bioengineered, 2022, 13(3): 7197-7208. DOI: 10.1080/21655979.2022.2036894.
pmid: 35263216 |
[50] | Ma J, Chen C, Fan Z, et al. CircEGFR reduces the sensitivity of pirarubicin and regulates the malignant progression of triple-negative breast cancer via the miR-1299/EGFR axis[J]. Int J Biol Macromol, 2023, 244: 125295. DOI: 10.1016/j.ijbiomac.2023.125295. |
[51] | He ZY, Zhuo RG, Yang SP, et al. CircNCOR1 regulates breast cancer radiotherapy efficacy by regulating CDK2 via hsa-miR-638 binding[J]. Cell Signal, 2023, 109: 110787. DOI: 10.1016/j.cellsig.2023.110787. |
[1] | 郭泽浩, 张俊旺. PFDN及其亚基在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2024, 51(6): 350-353. |
[2] | 叶彤彤, 吴泽宇, 席文一, 王芝微, 江晓春, 赵晨辉. ABRACL在恶性肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2023, 50(9): 544-547. |
[3] | 徐凡, 王婧, 毛宁, 王世雄, 李金茂. 戈沙妥珠单抗治疗晚期三阴性乳腺癌1例[J]. 国际肿瘤学杂志, 2023, 50(8): 508-510. |
[4] | 潘书兰, 刘畅, 贺平. 福瑞替尼对三阴性乳腺癌血管生成、肿瘤生长及IRE1-ASK1-JNK通路的影响[J]. 国际肿瘤学杂志, 2023, 50(8): 457-462. |
[5] | 崔曼莉, 路宁, 朱琳, 李茜, 张明鑫. 基于高通量测序数据分析食管鳞状细胞癌circRNA的研究[J]. 国际肿瘤学杂志, 2023, 50(6): 328-335. |
[6] | 李彬, 张桂芳, 周林静, 杨小冬, 何秋立, 贾思思, 黄普超, 梁嘉欣. 三阴性乳腺癌中PIK3CA基因状态与临床特征及预后的关系[J]. 国际肿瘤学杂志, 2023, 50(5): 263-267. |
[7] | 谢露露, 丁江华. 免疫治疗在晚期三阴性乳腺癌中的应用进展[J]. 国际肿瘤学杂志, 2023, 50(11): 672-676. |
[8] | 吴家宜, 陈柯羽, 邵喜英, 王晓稼. CDK4/6抑制剂通过调控三阴性乳腺癌免疫微环境促进抗肿瘤免疫的机制研究进展[J]. 国际肿瘤学杂志, 2022, 49(6): 362-365. |
[9] | 王孟超, 陈立伟, 孔凡铭. 戈沙妥珠单抗治疗三阴性乳腺癌的研究进展[J]. 国际肿瘤学杂志, 2022, 49(10): 619-622. |
[10] | 王佳荔. 分子分型与基因组分析推动难治性转移性三阴性乳腺癌的精准治疗:FUTURE试验[J]. 国际肿瘤学杂志, 2021, 48(11): 698-701. |
[11] | 任梦, 高燕, 陈琪, 岳文涛. 角蛋白在肿瘤诊断及预后中的应用[J]. 国际肿瘤学杂志, 2020, 47(6): 360-363. |
[12] | 李开春, 王雅杰. 转移性三阴性乳腺癌临床研究现状[J]. 国际肿瘤学杂志, 2020, 47(3): 169-173. |
[13] | 亢野,李建一,杨向红. 三阴性乳腺癌干细胞研究进展[J]. 国际肿瘤学杂志, 2019, 46(6): 362-365. |
[14] | 朱成英, 张俊萍. NKG2D及其配体与肿瘤免疫治疗研究新进展[J]. 国际肿瘤学杂志, 2011, 38(5): 349-351. |
[15] | 李彩荣, 凌斌. 间充质干细胞与肿瘤生物治疗[J]. 国际肿瘤学杂志, 2011, 38(4): 254-256. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||