国际肿瘤学杂志 ›› 2024, Vol. 51 ›› Issue (10): 645-649.doi: 10.3760/cma.j.cn371439-20240429-00108
陶晋1, 阚俊楠1, 杨彩霞1, 刘岩1, 吕奕洁2, 魏俊辉1, 李祥林1()
收稿日期:
2024-04-29
修回日期:
2024-08-10
出版日期:
2024-10-08
发布日期:
2024-12-04
通讯作者:
李祥林
E-mail:xlli@bzmc.edu.cn
基金资助:
Tao Jin1, Kan Junnan1, Yang Caixia1, Liu Yan1, Lyu Yijie2, Wei Junhui1, Li Xianglin1()
Received:
2024-04-29
Revised:
2024-08-10
Online:
2024-10-08
Published:
2024-12-04
Contact:
Li Xianglin
E-mail:xlli@bzmc.edu.cn
Supported by:
摘要:
乳腺癌是女性发病率最高的肿瘤,早期诊断并优化治疗策略对提高乳腺癌预后至关重要。近年来,随着纳米技术的发展,锰基纳米材料在乳腺癌早期诊断、药物递送、肿瘤治疗等多方面展现潜力。相较于其他纳米材料,锰基纳米材料具有良好的生物相容性,已成为乳腺癌诊疗研究中的重要方向。
陶晋, 阚俊楠, 杨彩霞, 刘岩, 吕奕洁, 魏俊辉, 李祥林. 锰基纳米材料在乳腺癌诊疗中的应用进展[J]. 国际肿瘤学杂志, 2024, 51(10): 645-649.
Tao Jin, Kan Junnan, Yang Caixia, Liu Yan, Lyu Yijie, Wei Junhui, Li Xianglin. Progress of manganese-based nanomaterials in breast cancer diagnosis and treatment[J]. Journal of International Oncology, 2024, 51(10): 645-649.
[1] | 赵倩雯, 彭丹莉, 秦韬, 等. 1990—2019年全球肿瘤发病死亡分析[J]. 国际肿瘤学杂志, 2023, 50(7): 425-431. DOI: 10.3760/cma.j.cn371439-20230315-00082. |
[2] |
Sun Z, Wang Z, Wang T, et al. Biodegradable MnO-based nanoparticles with engineering surface for tumor therapy: simultaneous fenton-like ion delivery and immune activation[J]. ACS Nano, 2022, 16(8): 11862-11875. DOI: 10.1021/acsnano.2c00969.
pmid: 35925671 |
[3] | Jain P, Jangid AK, Pooja D, et al. Designing of manganese-based nanomaterials for pharmaceutical and biomedical applications[J]. J Mater Chem B, 2024, 12(3): 577-608. DOI: 10.1039/d3tb00779k. |
[4] |
Wekking D, Porcu M, De Silva P, et al. Breast MRI: clinical indications, recommendations, and future applications in breast cancer diagnosis[J]. Curr Oncol Rep, 2023, 25(4): 257-267. DOI: 10.1007/s11912-023-01372-x.
pmid: 36749493 |
[5] | Chen X, Teng S, Li J, et al. Gadolinium(Ⅲ)-chelated deformable mesoporous organosilica nanoparticles as magnetic resonance imaging contrast agent[J]. Adv Mater, 2023, 35(20): 2211578. DOI: 10.1002/adma.202211578. |
[6] | Daksh S, Kaul A, Deep S, et al. Current advancement in the development of manganese complexes as magnetic resonance imaging probes[J]. J Inorg Biochem, 2022, 237: 112018. DOI: 10.1016/j.jinorgbio.2022.112018. |
[7] |
Ouyang S, Chen C, Lin P, et al. Hydrogen-bonded organic frameworks chelated manganese for precise magnetic resonance imaging diagnosis of cancers[J]. Nano Lett, 2023, 23(18): 8628-8636. DOI: 10.1021/acs.nanolett.3c02466.
pmid: 37694968 |
[8] | Carniato F, Ricci M, Tei L, et al. Novel nanogels loaded with Mn(Ⅱ)chelates as effective and biologically stable MRI probes[J]. Small, 2023, 19(42): 2302868. DOI: 10.1002/smll.202302868. |
[9] |
Liu Y, Bhattarai P, Dai Z, et al. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer[J]. Chem Soc Rev, 2019, 48(7): 2053-2108. DOI: 10.1039/c8cs00618k.
pmid: 30259015 |
[10] | Yu Y, Feng T, Qiu H, et al. Simultaneous photoacoustic and ultrasound imaging: a review[J]. Ultrasonics, 2024, 139: 107277. DOI: 10.1016/j.ultras.2024.107277. |
[11] |
Neuschler EI, Butler R, Young CA, et al. A pivotal study of optoacoustic imaging to diagnose benign and malignant breast masses: a new evaluation tool for radiologists[J]. Radiology, 2018, 287(2): 398-412. DOI: 10.1148/radiol.2017172228.
pmid: 29178816 |
[12] | Teng L, Han X, Liu Y, et al. Smart nanozyme platform with activity-correlated ratiometric molecular imaging for predicting therapeutic effects[J]. Angew Chem Int Ed Engl, 2021, 133(50): 26346-26354. DOI: 10.1002/anie.202110427. |
[13] |
Tang Q, Cheng Z, Yang N, et al. Hydrangea-structured tumor microenvironment responsive degradable nanoplatform for hypoxic tumor multimodal imaging and therapy[J]. Biomaterials, 2019, 205: 1-10. DOI: 10.1016/j.biomaterials.2019.03.005.
pmid: 30889497 |
[14] | Lv Y, Kan J, Luo M, et al. Multifunctional nanosnowflakes for T1-T2 double-contrast enhanced MRI and PAI guided oxygen self-supplementing effective anti-tumor therapy[J]. Int J Nanomedicine, 2022, 17: 4619-4638. DOI: 10.2147/IJN.S379526. |
[15] |
Vogel A, Meyer T, Sapisochin G, et al. Hepatocellular carcinoma[J]. Lancet, 2022, 400(10360): 1345-1362. DOI: 10.1016/S0140-6736(22)01200-4.
pmid: 36084663 |
[16] | Weber WA, Barthel H, Bengel F, et al. What is theranostics?[J]. J Nucl Med, 2023, 64(5): 669-670. DOI: 10.2967/jnumed.123.265670. |
[17] | Pan YB, Xu CX, Deng HZ, et al. Localized NIR-Ⅱ laser mediated chemodynamic therapy of glioblastoma[J]. Nano Today, 2022, 43: 101435. DOI: 10.1016/j.nantod.2022.101435. |
[18] | Zhang L, Yang Z, He W, et al. One-pot synthesis of a self-reinforcing cascade bioreactor for combined photodynamic/chemodynamic/starvation therapy[J]. J Colloid Interface Sci, 2021, 599: 543-555. DOI: 10.1016/j.jcis.2021.03.173. |
[19] | Xu X, Zhang R, Yang X, et al. A honeycomb-like bismuth/manganese oxide nanoparticle with mutual reinforcement of internal and external response for triple-negative breast cancer targeted therapy[J]. Adv Healthc Mater, 2021, 10(18): 2100518. DOI: 10.1002/adhm.202100518. |
[20] | Adams S, Gatti-Mays ME, Kalinsky K, et al. Current landscape of immunotherapy in breast cancer: a review[J]. JAMA Oncol, 2019, 5(8): 1205-1214. DOI: 10.1001/jamaoncol.2018.7147. |
[21] | Lv MZ, Chen MX, Zhang R, et al. Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy[J]. Cell Res, 2020, 30(11): 966-979. DOI: 10.1038/s41422-020-00395-4. |
[22] | Zhong H, Chen G, Li T, et al. Nanodrug augmenting antitumor immunity for enhanced TNBC therapy via pyroptosis and cGAS-STING activation[J]. Nano Lett, 2023, 23(11): 5083-5091. DOI: 10.1021/acs.nanolett.3c01008. |
[23] | Rashid NS, Grible JM, Clevenger CV, et al. Breast cancer liver metastasis: current and future treatment approaches[J]. Clin Exp Metastasis, 2021, 38(3): 263-277. DOI: 10.1007/s10585-021-10080-4. |
[24] |
Zhong Y, Li T, Zhu Y, et al. Targeting proinflammatory molecules using multifunctional MnO nanoparticles to inhibit breast cancer recurrence and metastasis[J]. ACS Nano, 2022, 16(12): 20430-20444. DOI: 10.1021/acsnano.2c06713.
pmid: 36382718 |
[25] | Wang SB, Zhang C, Ye JJ, et al. Near-infrared light responsive nanoreactor for simultaneous tumor photothermal therapy and carbon monoxide-mediated anti-inflammation[J]. ACS Cent Sci, 2020, 6(4): 555-565. DOI: 10.1021/acscentsci.9b01342. |
[26] | Peng J, Dong M, Ran B, et al. "One-for-All"-type, biodegradable prussian blue/manganese dioxide hybrid nanocrystal for trimodal imaging-guided photothermal therapy and oxygen regulation of breast cancer[J]. ACS Appl Mater Interfaces, 2017, 9(16): 13875-13886. DOI: 10.1021/acsami.7b01365. |
[27] |
Xie W, Guo Z, Gao Q, et al. Manganese-doped layered double hydroxide: a biodegradable theranostic nanoplatform with tumor microenvironment response for magnetic resonance imaging-guided photothermal therapy[J]. ACS Appl Bio Mater, 2020, 3(9): 5845-5855. DOI: 10.1021/acsabm.0c00564.
pmid: 35021812 |
[28] | Niu B, Liao K, Zhou Y, et al. Application of glutathione depletion in cancer therapy: enhanced ROS-based therapy, ferroptosis, and chemotherapy[J]. Biomaterials, 2021, 277: 121110. DOI: 10.1016/j.biomaterials.2021.121110. |
[29] | Yuan P, Deng FA, Liu YB, et al. Mitochondria targeted O2 economizer to alleviate tumor hypoxia for enhanced photodynamic therapy[J]. Adv Healthc Mater, 2021, 10(12): 2100198. DOI: 10.1002/adhm.202100198. |
[30] | Zhou X, Xu X, Hu Q, et al. Novel manganese and polyester dendrimer-based theranostic nanoparticles for MRI and breast cancer therapy[J]. J Mater Chem B, 2023, 11(3): 648-656. DOI: 10.1039/d2tb01855a. |
[31] | Li W, Li R, Ye Q, et al. Mn3O4 nanoshell coated metal-organic frameworks with microenvironment-driven O2 production and GSH exhaustion ability for enhanced chemodynamic and photodynamic cancer therapies[J]. Adv Healthc Mater, 2023, 12(15): 2202280. DOI: 10.1002/adhm.202202280. |
[32] |
Beckers C, Pruschy M, Vetrugno I. Tumor hypoxia and radiotherapy: a major driver of resistance even for novel radiotherapy modalities[J]. Semin Cancer Biol, 2024, 98: 19-30. DOI: 10.1016/j.semcancer.2023.11.006.
pmid: 38040401 |
[33] | He Z, Yan H, Zeng W, et al. Tumor microenvironment-responsive multifunctional nanoplatform based on MnFe2O4-PEG for enhanced magnetic resonance imaging-guided hypoxic cancer radiotherapy[J]. J Mater Chem B, 2021, 9(6): 1625-1637. DOI: 10.1039/d0tb02631j. |
[34] | Hu H, Zheng S, He C, et al. Radiotherapy-sensitized cancer immunotherapy via cGAS-STING immune pathway by activatable nanocascade reaction[J]. J Nanobiotechnology, 2024, 22(1): 234. DOI: 10.1186/s12951-024-02502-8. |
[35] |
Xiong Y, Xiao C, Li Z, et al. Engineering nanomedicine for glutathione depletion-augmented cancer therapy[J]. Chem Soc Rev, 2021, 50(10): 6013-6041. DOI: 10.1039/d0cs00718h.
pmid: 34027953 |
[36] | Zhang H, Li M, Zhu X, et al. Artemisinin co-delivery system based on manganese oxide for precise diagnosis and treatment of breast cancer[J]. Nanotechnology, 2021, 32(32): 325101. DOI: 10.1088/1361-6528/abfc6f. |
[37] | Jain P, Patel K, Jangid AK, et al. Biotinylated Mn3O4 nanocuboids for targeted delivery of gemcitabine hydrochloride to breast cancer and MRI applications[J]. Int J Pharm, 2021, 606: 120895. DOI: 10.1016/j.ijpharm.2021.120895. |
[1] | 韩晓旭, 张楠, 刘帅. 孕烷X受体在乳腺癌耐药中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(9): 590-594. |
[2] | 孟繁明. 伊尼妥单抗联合卡培他滨治疗曲妥珠单抗经治的HER2阳性晚期乳腺癌1例[J]. 国际肿瘤学杂志, 2024, 51(8): 538-541. |
[3] | 赵彪, 蒲琴, 袁美芳, 马立双, 李瀚, 杨毅, 孙朝细. 基于内缘切线野的调强放疗与容积弧形调强放疗在左侧乳腺癌保乳术后放疗中的剂量学研究[J]. 国际肿瘤学杂志, 2024, 51(7): 441-447. |
[4] | 韩艺, 张同梅, 齐菲, 张泳. 肺大细胞神经内分泌癌临床分子诊断和治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(7): 468-473. |
[5] | 刘琴, 张强强, 杨继元, 胡艳. 晚期前列腺癌双侧乳腺和腋窝淋巴结转移1例[J]. 国际肿瘤学杂志, 2024, 51(7): 478-480. |
[6] | 王盈, 刘楠, 郭兵. 抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[7] | 萨蔷, 徐航程, 王佳玉. 乳腺癌免疫治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 227-234. |
[8] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙. 肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. |
[9] | 王子豪, 王宇, 杨鑫, 何艺, 莫兴奎, 袁涛. 铁死亡在骨肉瘤中的分子机制及相关治疗的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 239-244. |
[10] | 陈波光, 王苏贵, 张永杰. 血清胆碱酯酶与炎症标志物在ⅠA~ⅢA期乳腺癌预后中的作用[J]. 国际肿瘤学杂志, 2024, 51(2): 73-82. |
[11] | 张悦宁, 刘倩, 李惠娴, 洪慧, 张金岭. 软腭及食管多原发鳞状细胞癌鼻尖皮肤转移1例[J]. 国际肿瘤学杂志, 2024, 51(10): 667-669. |
[12] | 高新雨, 李振江, 孙洪福, 韩丹, 赵倩, 刘成新, 黄伟. 基于MR加速器的MR引导放疗在食管癌患者中的临床应用[J]. 国际肿瘤学杂志, 2024, 51(1): 37-42. |
[13] | 顾花艳, 朱腾, 郭贵龙. 乳房微生物群与乳腺癌:现状与未来[J]. 国际肿瘤学杂志, 2024, 51(1): 55-58. |
[14] | 王景, 许文婷. 中性粒细胞与淋巴细胞比值、癌胚抗原联合凝血指标对直径≤1.0 cm的良恶性乳腺结节鉴别诊断价值研究[J]. 国际肿瘤学杂志, 2023, 50(9): 520-526. |
[15] | 冯诚天, 黄芙蓉, 曹世玉, 王健宇, 南丁阿比雅思, 姜永冬, 朱娟英. HER2阳性乳腺癌患者HER2表达水平与影像学特征的关系[J]. 国际肿瘤学杂志, 2023, 50(9): 527-531. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 40
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 38
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||