[1] |
赵倩雯, 彭丹莉, 秦韬, 等. 1990—2019年全球肿瘤发病死亡分析[J]. 国际肿瘤学杂志, 2023, 50(7): 425-431. DOI: 10.3760/cma.j.cn371439-20230315-00082.
|
[2] |
Sun Z, Wang Z, Wang T, et al. Biodegradable MnO-based nanoparticles with engineering surface for tumor therapy: simultaneous fenton-like ion delivery and immune activation[J]. ACS Nano, 2022, 16(8): 11862-11875. DOI: 10.1021/acsnano.2c00969.
pmid: 35925671
|
[3] |
Jain P, Jangid AK, Pooja D, et al. Designing of manganese-based nanomaterials for pharmaceutical and biomedical applications[J]. J Mater Chem B, 2024, 12(3): 577-608. DOI: 10.1039/d3tb00779k.
|
[4] |
Wekking D, Porcu M, De Silva P, et al. Breast MRI: clinical indications, recommendations, and future applications in breast cancer diagnosis[J]. Curr Oncol Rep, 2023, 25(4): 257-267. DOI: 10.1007/s11912-023-01372-x.
pmid: 36749493
|
[5] |
Chen X, Teng S, Li J, et al. Gadolinium(Ⅲ)-chelated deformable mesoporous organosilica nanoparticles as magnetic resonance imaging contrast agent[J]. Adv Mater, 2023, 35(20): 2211578. DOI: 10.1002/adma.202211578.
|
[6] |
Daksh S, Kaul A, Deep S, et al. Current advancement in the development of manganese complexes as magnetic resonance imaging probes[J]. J Inorg Biochem, 2022, 237: 112018. DOI: 10.1016/j.jinorgbio.2022.112018.
|
[7] |
Ouyang S, Chen C, Lin P, et al. Hydrogen-bonded organic frameworks chelated manganese for precise magnetic resonance imaging diagnosis of cancers[J]. Nano Lett, 2023, 23(18): 8628-8636. DOI: 10.1021/acs.nanolett.3c02466.
pmid: 37694968
|
[8] |
Carniato F, Ricci M, Tei L, et al. Novel nanogels loaded with Mn(Ⅱ)chelates as effective and biologically stable MRI probes[J]. Small, 2023, 19(42): 2302868. DOI: 10.1002/smll.202302868.
|
[9] |
Liu Y, Bhattarai P, Dai Z, et al. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer[J]. Chem Soc Rev, 2019, 48(7): 2053-2108. DOI: 10.1039/c8cs00618k.
pmid: 30259015
|
[10] |
Yu Y, Feng T, Qiu H, et al. Simultaneous photoacoustic and ultrasound imaging: a review[J]. Ultrasonics, 2024, 139: 107277. DOI: 10.1016/j.ultras.2024.107277.
|
[11] |
Neuschler EI, Butler R, Young CA, et al. A pivotal study of optoacoustic imaging to diagnose benign and malignant breast masses: a new evaluation tool for radiologists[J]. Radiology, 2018, 287(2): 398-412. DOI: 10.1148/radiol.2017172228.
pmid: 29178816
|
[12] |
Teng L, Han X, Liu Y, et al. Smart nanozyme platform with activity-correlated ratiometric molecular imaging for predicting therapeutic effects[J]. Angew Chem Int Ed Engl, 2021, 133(50): 26346-26354. DOI: 10.1002/anie.202110427.
|
[13] |
Tang Q, Cheng Z, Yang N, et al. Hydrangea-structured tumor microenvironment responsive degradable nanoplatform for hypoxic tumor multimodal imaging and therapy[J]. Biomaterials, 2019, 205: 1-10. DOI: 10.1016/j.biomaterials.2019.03.005.
pmid: 30889497
|
[14] |
Lv Y, Kan J, Luo M, et al. Multifunctional nanosnowflakes for T1-T2 double-contrast enhanced MRI and PAI guided oxygen self-supplementing effective anti-tumor therapy[J]. Int J Nanomedicine, 2022, 17: 4619-4638. DOI: 10.2147/IJN.S379526.
|
[15] |
Vogel A, Meyer T, Sapisochin G, et al. Hepatocellular carcinoma[J]. Lancet, 2022, 400(10360): 1345-1362. DOI: 10.1016/S0140-6736(22)01200-4.
pmid: 36084663
|
[16] |
Weber WA, Barthel H, Bengel F, et al. What is theranostics?[J]. J Nucl Med, 2023, 64(5): 669-670. DOI: 10.2967/jnumed.123.265670.
|
[17] |
Pan YB, Xu CX, Deng HZ, et al. Localized NIR-Ⅱ laser mediated chemodynamic therapy of glioblastoma[J]. Nano Today, 2022, 43: 101435. DOI: 10.1016/j.nantod.2022.101435.
|
[18] |
Zhang L, Yang Z, He W, et al. One-pot synthesis of a self-reinforcing cascade bioreactor for combined photodynamic/chemodynamic/starvation therapy[J]. J Colloid Interface Sci, 2021, 599: 543-555. DOI: 10.1016/j.jcis.2021.03.173.
|
[19] |
Xu X, Zhang R, Yang X, et al. A honeycomb-like bismuth/manganese oxide nanoparticle with mutual reinforcement of internal and external response for triple-negative breast cancer targeted therapy[J]. Adv Healthc Mater, 2021, 10(18): 2100518. DOI: 10.1002/adhm.202100518.
|
[20] |
Adams S, Gatti-Mays ME, Kalinsky K, et al. Current landscape of immunotherapy in breast cancer: a review[J]. JAMA Oncol, 2019, 5(8): 1205-1214. DOI: 10.1001/jamaoncol.2018.7147.
|
[21] |
Lv MZ, Chen MX, Zhang R, et al. Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy[J]. Cell Res, 2020, 30(11): 966-979. DOI: 10.1038/s41422-020-00395-4.
|
[22] |
Zhong H, Chen G, Li T, et al. Nanodrug augmenting antitumor immunity for enhanced TNBC therapy via pyroptosis and cGAS-STING activation[J]. Nano Lett, 2023, 23(11): 5083-5091. DOI: 10.1021/acs.nanolett.3c01008.
|
[23] |
Rashid NS, Grible JM, Clevenger CV, et al. Breast cancer liver metastasis: current and future treatment approaches[J]. Clin Exp Metastasis, 2021, 38(3): 263-277. DOI: 10.1007/s10585-021-10080-4.
|
[24] |
Zhong Y, Li T, Zhu Y, et al. Targeting proinflammatory molecules using multifunctional MnO nanoparticles to inhibit breast cancer recurrence and metastasis[J]. ACS Nano, 2022, 16(12): 20430-20444. DOI: 10.1021/acsnano.2c06713.
pmid: 36382718
|
[25] |
Wang SB, Zhang C, Ye JJ, et al. Near-infrared light responsive nanoreactor for simultaneous tumor photothermal therapy and carbon monoxide-mediated anti-inflammation[J]. ACS Cent Sci, 2020, 6(4): 555-565. DOI: 10.1021/acscentsci.9b01342.
|
[26] |
Peng J, Dong M, Ran B, et al. "One-for-All"-type, biodegradable prussian blue/manganese dioxide hybrid nanocrystal for trimodal imaging-guided photothermal therapy and oxygen regulation of breast cancer[J]. ACS Appl Mater Interfaces, 2017, 9(16): 13875-13886. DOI: 10.1021/acsami.7b01365.
|
[27] |
Xie W, Guo Z, Gao Q, et al. Manganese-doped layered double hydroxide: a biodegradable theranostic nanoplatform with tumor microenvironment response for magnetic resonance imaging-guided photothermal therapy[J]. ACS Appl Bio Mater, 2020, 3(9): 5845-5855. DOI: 10.1021/acsabm.0c00564.
pmid: 35021812
|
[28] |
Niu B, Liao K, Zhou Y, et al. Application of glutathione depletion in cancer therapy: enhanced ROS-based therapy, ferroptosis, and chemotherapy[J]. Biomaterials, 2021, 277: 121110. DOI: 10.1016/j.biomaterials.2021.121110.
|
[29] |
Yuan P, Deng FA, Liu YB, et al. Mitochondria targeted O2 economizer to alleviate tumor hypoxia for enhanced photodynamic therapy[J]. Adv Healthc Mater, 2021, 10(12): 2100198. DOI: 10.1002/adhm.202100198.
|
[30] |
Zhou X, Xu X, Hu Q, et al. Novel manganese and polyester dendrimer-based theranostic nanoparticles for MRI and breast cancer therapy[J]. J Mater Chem B, 2023, 11(3): 648-656. DOI: 10.1039/d2tb01855a.
|
[31] |
Li W, Li R, Ye Q, et al. Mn3O4 nanoshell coated metal-organic frameworks with microenvironment-driven O2 production and GSH exhaustion ability for enhanced chemodynamic and photodynamic cancer therapies[J]. Adv Healthc Mater, 2023, 12(15): 2202280. DOI: 10.1002/adhm.202202280.
|
[32] |
Beckers C, Pruschy M, Vetrugno I. Tumor hypoxia and radiotherapy: a major driver of resistance even for novel radiotherapy modalities[J]. Semin Cancer Biol, 2024, 98: 19-30. DOI: 10.1016/j.semcancer.2023.11.006.
pmid: 38040401
|
[33] |
He Z, Yan H, Zeng W, et al. Tumor microenvironment-responsive multifunctional nanoplatform based on MnFe2O4-PEG for enhanced magnetic resonance imaging-guided hypoxic cancer radiotherapy[J]. J Mater Chem B, 2021, 9(6): 1625-1637. DOI: 10.1039/d0tb02631j.
|
[34] |
Hu H, Zheng S, He C, et al. Radiotherapy-sensitized cancer immunotherapy via cGAS-STING immune pathway by activatable nanocascade reaction[J]. J Nanobiotechnology, 2024, 22(1): 234. DOI: 10.1186/s12951-024-02502-8.
|
[35] |
Xiong Y, Xiao C, Li Z, et al. Engineering nanomedicine for glutathione depletion-augmented cancer therapy[J]. Chem Soc Rev, 2021, 50(10): 6013-6041. DOI: 10.1039/d0cs00718h.
pmid: 34027953
|
[36] |
Zhang H, Li M, Zhu X, et al. Artemisinin co-delivery system based on manganese oxide for precise diagnosis and treatment of breast cancer[J]. Nanotechnology, 2021, 32(32): 325101. DOI: 10.1088/1361-6528/abfc6f.
|
[37] |
Jain P, Patel K, Jangid AK, et al. Biotinylated Mn3O4 nanocuboids for targeted delivery of gemcitabine hydrochloride to breast cancer and MRI applications[J]. Int J Pharm, 2021, 606: 120895. DOI: 10.1016/j.ijpharm.2021.120895.
|