[1] |
Ostrom QT, Cioffi G, Gittleman H, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012-2016[J]. Neuro Oncol, 2019, 21(Suppl 5): v1-v100. DOI: 10.1093/neuonc/noz150.
|
[2] |
Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: a summary[J]. Neuro Oncol, 2021, 23(8): 1231-1251. DOI: 10.1093/neuonc/noab106.
|
[3] |
肖楠, 孙鹏飞. 氧化应激在胶质瘤放化疗敏感性中的研究进展[J]. 国际肿瘤学杂志, 2022, 49(6): 357-361. DOI: 10.3760/cma.j.cn371439-20220309-00068.
|
[4] |
Xu C, Xiao M, Li X, et al. Origin, activation, and targeted therapy of glioma-associated macrophages[J]. Front Immunol, 2022, 13: 974996. DOI: 10.3389/fimmu.2022.974996.
|
[5] |
Rominiyi O, Vanderlinden A, Clenton SJ, et al. Tumour treating fields therapy for glioblastoma: current advances and future directions[J]. Br J Cancer, 2021, 124(4): 697-709. DOI: 10.1038/s41416-020-01136-5.
|
[6] |
连海伟, 杨烁锐, 刘仁忠. 金松双黄酮联合CX-4945通过Notch1通路调控胶质母细胞瘤细胞增殖与凋亡的机制研究[J]. 国际肿瘤学杂志, 2022, 49(6): 321-326. DOI: 10.3760/cma.j.cn371439-20220118-00061.
|
[7] |
Velásquez C, Mansouri S, Mora C, et al. Molecular and clinical insights into the invasive capacity of glioblastoma cells[J]. J Oncol, 2019, 2019: 1740763. DOI: 10.1155/2019/1740763.
|
[8] |
Shams S, Patel CB. Anti-cancer mechanisms of action of therapeutic alternating electric fields (tumor treating fields [TTFields])[J]. J Mol Cell Biol, 2022, 14(8): mjac047. DOI: 10.1093/jmcb/mjac047.
|
[9] |
Barsheshet Y, Voloshin T, Brant B, et al. Tumor treating fields (TTFields) concomitant with immune checkpoint inhibitors are therapeutically effective in non-small cell lung cancer (NSCLC) in vivo model[J]. Int J Mol Sci, 2022, 23(22): 14073. DOI: 10.3390/ijms232214073.
|
[10] |
Ceresoli GL, Aerts JG, Dziadziuszko R, et al. Tumour treating fields in combination with pemetrexed and cisplatin or carboplatin as first-line treatment for unresectable malignant pleural mesothelioma (STELLAR): a multicentre, single-arm phase 2 trial[J]. Lancet Oncol, 2019, 20(12): 1702-1709. DOI: 10.1016/s1470-2045(19)30532-7.
pmid: 31628016
|
[11] |
Guo X, Yang X, Wu J, et al. Tumor-treating fields in glioblastomas: past, present, and future[J]. Cancers (Basel), 2022, 14(15): 3669. DOI: 10.3390/cancers14153669.
|
[12] |
Hadjipanayis CG, Stummer W. 5-ALA and FDA approval for glioma surgery[J]. J Neurooncol, 2019, 141(3): 479-486. DOI: 10.1007/s11060-019-03098-y.
|
[13] |
Moser JC, Salvador E, Deniz K, et al. The mechanisms of action of tumor treating fields[J]. Cancer Res, 2022, 82(20): 3650-3658. DOI: 10.1158/0008-5472.Can-22-0887.
pmid: 35839284
|
[14] |
Giladi M, Schneiderman RS, Voloshin T, et al. Mitotic spindle disruption by alternating electric fields leads to improper chromosome segregation and mitotic catastrophe in cancer cells[J]. Sci Rep, 2015, 5: 18046. DOI: 10.1038/srep18046.
pmid: 26658786
|
[15] |
Hong P, Kudulaiti N, Wu S, et al. Tumor treating fields: a comprehensive overview of the underlying molecular mechanism[J]. Expert Rev Mol Diagn, 2022, 22(1): 19-28. DOI: 10.1080/14737159.2022.2017283.
|
[16] |
Tanzhu G, Chen L, Xiao G, et al. The schemes, mechanisms and molecular pathway changes of tumor treating fields (TTFields) alone or in combination with radiotherapy and chemotherapy[J]. Cell Death Discov, 2022, 8(1): 416. DOI: 10.1038/s41420-022-01206-y.
pmid: 36220835
|
[17] |
Kim EH, Jo Y, Sai S, et al. Tumor-treating fields induce autophagy by blocking the Akt2/miR29b axis in glioblastoma cells[J]. Oncogene, 2019, 38(39): 6630-6646. DOI: 10.1038/s41388-019-0882-7.
pmid: 31375748
|
[18] |
Belyaeva E, Kharwar RK, Ulasov IV, et al. Isoforms of autophagy-related proteins: role in glioma progression and therapy resistance[J]. Mol Cell Biochem, 2022, 477(2): 593-604. DOI: 10.1007/s11010-021-04308-w.
|
[19] |
Xu S, Luo C, Chen D, et al. Whole transcriptome and proteome analyses identify potential targets and mechanisms underlying tumor treating fields against glioblastoma[J]. Cell Death Dis, 2022, 13(8): 721. DOI: 10.1038/s41419-022-05127-7.
pmid: 35982032
|
[20] |
Aguilar AA, Ho MC, Chang E, et al. Permeabilizing cell membranes with electric fields[J]. Cancers (Basel), 2021, 13(9): 2283. DOI: 10.3390/cancers13092283.
|
[21] |
Chang E, Patel CB, Pohling C, et al. Tumor treating fields increases membrane permeability in glioblastoma cells[J]. Cell Death Discovery, 2018, 4(1): 113. DOI: 10.1038/s41420-018-0130-x.
|
[22] |
Salvador E, Kessler AF, Domröse D, et al. Tumor treating fields (TTFields) reversibly permeabilize the blood-brain barrier in vitro and in vivo[J]. Biomolecules, 2022, 12(10): 1348. DOI: 10.3390/biom12101348.
|
[23] |
Li X, Yang F, Rubinsky B. A theoretical study on the biophysical mechanisms by which tumor treating fields affect tumor cells during mitosis[J]. IEEE Trans Biomed Eng, 2020, 67(9): 2594-2602. DOI: 10.1109/tbme.2020.2965883.
pmid: 31940516
|
[24] |
Lee WS, Seo SJ, Chung HK, et al. Tumor-treating fields as a proton beam-sensitizer for glioblastoma therapy[J]. Am J Cancer Res, 2021, 11(9): 4582-4594.
pmid: 34659907
|
[25] |
Voloshin T, Schneiderman RS, Volodin A, et al. Tumor treating fields (TTFields) hinder cancer cell motility through regulation of microtubule and acting dynamics[J]. Cancers (Basel), 2020, 12(10): 3016. DOI: 10.3390/cancers12103016.
|
[26] |
Prager BC, Bhargava S, Mahadev V, et al. Glioblastoma stem cells: driving resilience through chaos[J]. Trends Cancer, 2020, 6(3): 223-235. DOI: 10.1016/j.trecan.2020.01.009.
pmid: 32101725
|
[27] |
Sampson JH, Gunn MD, Fecci PE, et al. Brain immunology and immunotherapy in brain tumours[J]. Nat Rev Cancer, 2020, 20(1): 12-25. DOI: 10.1038/s41568-019-0224-7.
pmid: 31806885
|
[28] |
Voloshin T, Kaynan N, Davidi S, et al. Tumor-treating fields (TTFields) induce immunogenic cell death resulting in enhanced antitumor efficacy when combined with anti-PD-1 therapy[J]. Cancer Immunol Immunother, 2020, 69(7): 1191-1204. DOI: 10.1007/s00262-020-02534-7.
pmid: 32144446
|
[29] |
Chen DJ, Le SB, Hutchinson TE, et al. Tumor treating fields dually activate STING and AIM2 inflammasomes to induce adjuvant immunity in glioblastoma[J]. J Clin Invest, 2022, 132(8): e149258. DOI: 10.1172/jci149258.
|
[30] |
Diamant G, Simchony Goldman H, Gasri Plotnitsky L, et al. T cells retain pivotal antitumoral functions under tumor-treating electric fields[J]. J Immunol, 2021, 207(2): 709-719. DOI: 10.4049/jimmunol.2100100.
pmid: 34215656
|
[31] |
Karanam NK, Ding LH, Aroumougame A, et al. Tumor treating fields cause replication stress and interfere with DNA replication fork maintenance: implications for cancer therapy[J]. Transl Res, 2020, 217: 33-46. DOI: 10.1016/j.trsl.2019.10.003.
pmid: 31707040
|
[32] |
Kim EH, Kim YH, Song HS, et al. Biological effect of an alter-nating electric field on cell proliferation and synergistic antimitotic effect in combination with ionizing radiation[J]. Oncotarget, 2016, 7(38): 62267-62279. DOI: 10.18632/oncotarget.11407.
|
[33] |
Giladi M, Munster M, Schneiderman RS, et al. Tumor treating fields (TTFields) delay DNA damage repair following radiation treatment of glioma cells[J]. Radiat Oncol, 2017, 12(1): 206. DOI: 10.1186/s13014-017-0941-6.
pmid: 29284495
|
[34] |
Stupp R, Taillibert S, Kanner A, et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial[J]. JAMA, 2017, 318(23): 2306-2316. DOI: 10.1001/jama.2017.18718.
pmid: 29260225
|
[35] |
Guberina N, Pöttgen C, Kebir S, et al. Combined radiotherapy and concurrent tumor treating fields (TTFields) for glioblastoma: dosimetric consequences on non-coplanar IMRT as initial results from a phase Ⅰ trial[J]. Radiat Oncol, 2020, 15(1): 83. DOI: 10.1186/s13014-020-01521-7.
pmid: 32307022
|
[36] |
Jo Y, Kim EH, Sai S, et al. Functional biological activity of sorafenib as a tumor-treating field sensitizer for glioblastoma therapy[J]. Int J Mol Sci, 2018, 19(11): 3684. DOI: 10.3390/ijms19113684.
|
[37] |
Kim JY, Jo Y, Oh HK, et al. Sorafenib increases tumor treating fields-induced cell death in glioblastoma by inhibiting STAT3[J]. Am J Cancer Res, 2020, 10(10): 3475-3486.
|
[38] |
Dubinski D, Hattingen E, Senft C, et al. Controversial roles for dexamethasone in glioblastoma—opportunities for novel vascular targeting therapies[J]. J Cereb Blood Flow Metab, 2019, 39(8): 1460-1468. DOI: 10.1177/0271678x19859847.
|
[39] |
Iorgulescu JB, Gokhale PC, Speranza MC, et al. Concurrent dexamethasone limits the clinical benefit of immune checkpoint blockade in glioblastoma[J]. Clin Cancer Res, 2021, 27(1): 276-287. DOI: 10.1158/1078-0432.Ccr-20-2291.
pmid: 33239433
|
[40] |
Linder B, Schiesl A, Voss M, et al. Dexamethasone treatment limits efficacy of radiation, but does not interfere with glioma cell death induced by tumor treating fields[J]. Front Oncol, 2021, 11: 715031. DOI: 10.3389/fonc.2021.715031.
|
[41] |
Shi WY, Blumenthal DT, Oberheim Bush NA, et al. Global post-marketing safety surveillance of tumor treating fields (TTFields) in patients with high-grade glioma in clinical practice[J]. J Neurooncol, 2020, 148(3): 489-500. DOI: 10.1007/s11060-020-03540-6.
|
[42] |
Anadkat MJ, Lacouture MR, Friedman A, et al. Expert guidance on prophylaxis and treatment of dermatologic adverse events with tumor treating fields (TTFields) therapy in the thoracic region[J]. Front Oncol, 2023, 12: 975473. DOI: 10.3389/fonc.2022.975473.
|
[43] |
Shah PP, White T, Khalafallah AM, et al. A systematic review of tumor treating fields therapy for high-grade gliomas[J]. J Neurooncol, 2020, 148(3): 433-443. DOI: 10.1007/s11060-020-03563-z.
|