国际肿瘤学杂志 ›› 2023, Vol. 50 ›› Issue (5): 285-289.doi: 10.3760/cma.j.cn371439-20230123-00057
收稿日期:
2023-01-23
修回日期:
2023-02-15
出版日期:
2023-05-08
发布日期:
2023-06-27
通讯作者:
冯勤梅
E-mail:qmf369@hotmail.com
Zhang Yuan1, Feng Qinmei2(), Ma Meijie1, Bai Zhiyu1, Li Qi1
Received:
2023-01-23
Revised:
2023-02-15
Online:
2023-05-08
Published:
2023-06-27
Contact:
Feng Qinmei
E-mail:qmf369@hotmail.com
摘要:
细胞焦亡是一种区别于凋亡和坏死的细胞程序性死亡,其发生过程伴随着细胞膜的裂解和细胞内容物的释放。细胞焦亡由Gasdermin蛋白家族介导发生,并且依赖于caspase的活性。GSDME是Gasdermin蛋白超家族的重要成员之一,在其介导的细胞焦亡中依赖于caspase-3的活性。近年来,随着对细胞焦亡的进一步研究,GSDME诱导细胞焦亡的机制逐渐明确。众多研究表明GSDME介导的细胞焦亡在肿瘤的发生发展及化疗耐药中起重要作用。然而GSDME介导的细胞焦亡没有特异性,在诱导肿瘤细胞焦亡的同时,可诱导机体的正常细胞发生焦亡,从而对机体的各个器官造成不同程度的损伤。深入研究GSDME诱导细胞焦亡的机制、GSDME在恶性肿瘤中的作用及其化疗不良反应,可为肿瘤的监测、治疗及判断预后提供新的思路。
张渊, 冯勤梅, 马梅杰, 白芷玉, 李琪. GSDME在恶性肿瘤中的研究现状[J]. 国际肿瘤学杂志, 2023, 50(5): 285-289.
Zhang Yuan, Feng Qinmei, Ma Meijie, Bai Zhiyu, Li Qi. Current status of GSDME research in malignant tumors[J]. Journal of International Oncology, 2023, 50(5): 285-289.
[1] |
De Schutter E, Croes L, Ibrahim J, et al. GSDME and its role in cancer: from behind the scenes to the front of the stage[J]. Int J Cancer, 2021, 148(12): 2872-2883. DOI: 10.1002/ijc.33390.
doi: 10.1002/ijc.33390 pmid: 33186472 |
[2] |
Saeki N, Kuwahara Y, Sasaki H, et al. Gasdermin (Gsdm) locali-zing to mouse chromosome 11 is predominantly expressed in upper gastrointestinal tract but significantly suppressed in human gastric cancer cells[J]. Mamm Genome, 2000, 11(9): 718-724. DOI: 10. 1007/s003350010138.
doi: 10.1007/s003350010138 pmid: 10967128 |
[3] |
Ibrahim J, Op de Beeck K, Fransen E, et al. Methylation analysis of Gasdermin E shows great promise as a biomarker for colorectal cancer[J]. Cancer Med, 2019, 8(5): 2133-2145. DOI: 10.1002/cam4.2103.
doi: 10.1002/cam4.2103 |
[4] |
Wang Y, Gao W, Shi X, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin[J]. Nature, 2017, 547(7661): 99-103. DOI: 10.1038/nature22393.
doi: 10.1038/nature22393 |
[5] |
张依格, 高军, 王建榜. GSDME介导的细胞焦亡在肿瘤发生发展中的作用及其临床意义[J]. 中国肿瘤生物治疗杂志, 2021, 28(3): 288-293. DOI: 10.3872/j.issn.1007-385x.2021.03.011.
doi: 10.3872/j.issn.1007-385x.2021.03.011 |
[6] |
Jiang M, Qi L, Li L, et al. The caspase-3/GSDME signal pathway as a switch between apoptosis and pyroptosis in cancer[J]. Cell Death Discov, 2020, 6: 112. DOI: 10.1038/s41420-020-00349-0.
doi: 10.1038/s41420-020-00349-0 pmid: 33133646 |
[7] |
Hu L, Chen M, Chen X, et al. Chemotherapy-induced pyroptosis is mediated by BAK/BAX-caspase-3-GSDME pathway and inhibited by 2-bromopalmitate[J]. Cell Death Dis, 2020, 11(4): 281. DOI: 10.1038/s41419-020-2476-2.
doi: 10.1038/s41419-020-2476-2 pmid: 32332857 |
[8] |
Yang F, Bettadapura SN, Smeltzer MS, et al. Pyroptosis and pyroptosis-inducing cancer drugs[J]. Acta Pharmacol Sin, 2022, 43(10): 2462-2473. DOI: 10.1038/s41401-022-00887-6.
doi: 10.1038/s41401-022-00887-6 pmid: 35288674 |
[9] |
Zhang Z, Zhang Y, Xia S, et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity[J]. Nature, 2020, 579(7799): 415-420. DOI: 10.1038/s41586-020-2071-9.
doi: 10.1038/s41586-020-2071-9 |
[10] |
Wu F, Wang L, Zhou C. Lung cancer in China: current and prospect[J]. Curr Opin Oncol, 2021, 33(1): 40-46. DOI: 10.1097/CCO.0000000000000703.
doi: 10.1097/CCO.0000000000000703 pmid: 33165004 |
[11] |
高世华, 李植锋, 蔡键锋. GSDME通过p53、caspase3增强小细胞肺癌细胞的紫杉醇敏感[J]. 医学研究杂志, 2021, 50(10): 138-142. DOI: 10.11969/j.issn.1673-548X.2021.10.030.
doi: 10.11969/j.issn.1673-548X.2021.10.030 |
[12] |
Zhang CC, Li CG, Wang YF, et al. Chemotherapeutic paclitaxel and cisplatin differentially induce pyroptosis in A549 lung cancer cells via caspase-3/GSDME activation[J]. Apoptosis, 2019, 24(3/4): 312-325. DOI: 10.1007/s10495-019-01515-1.
doi: 10.1007/s10495-019-01515-1 |
[13] |
Peng Z, Wang P, Song W, et al. GSDME enhances cisplatin sensitivity to regress non-small cell lung carcinoma by mediating pyroptosis to trigger antitumor immunocyte infiltration[J]. Signal Transduct Target Ther, 2020, 5(1): 159. DOI: 10.1038/s41392-020-00274-9.
doi: 10.1038/s41392-020-00274-9 |
[14] |
Lu H, Zhang S, Wu J, et al. Molecular targeted therapies elicit concurrent apoptotic and GSDME-dependent pyroptotic tumor cell death[J]. Clin Cancer Res, 2018, 24(23): 6066-6077. DOI: 10.1158/1078-0432.CCR-18-1478.
doi: 10.1158/1078-0432.CCR-18-1478 pmid: 30061362 |
[15] |
Li W, Xu R, Zhu B, et al. Circular RNAs: functions and mechanisms in nasopharyngeal carcinoma[J]. Head Neck, 2022, 44(2): 494-504. DOI: 10.1002/hed.26962.
doi: 10.1002/hed.26962 |
[16] |
Guan S, Wei J, Huang L, et al. Chemotherapy and chemo-resistance in nasopharyngeal carcinoma[J]. Eur J Med Chem, 2020, 207: 112758. DOI: 10.1016/j.ejmech.2020.112758.
doi: 10.1016/j.ejmech.2020.112758 |
[17] |
Cai J, Yi M, Tan Y, et al. Natural product triptolide induces GSDME-mediated pyroptosis in head and neck cancer through suppressing mitochondrial hexokinase-Ⅱ[J]. J Exp Clin Cancer Res, 2021, 40(1): 190. DOI: 10.1186/s13046-021-01995-7.
doi: 10.1186/s13046-021-01995-7 |
[18] |
Li Q, Wang M, Zhang Y, et al. BIX-01294-enhanced chemosensitivity in nasopharyngeal carcinoma depends on autophagy-induced pyroptosis[J]. Acta Biochim Biophys Sin (Shanghai), 2020, 52(10): 1131-1139. DOI: 10.1093/abbs/gmaa097.
doi: 10.1093/abbs/gmaa097 |
[19] |
Di M, Miao J, Pan Q, et al. OTUD4-mediated GSDME deubiquitination enhances radiosensitivity in nasopharyngeal carcinoma by inducing pyroptosis[J]. J Exp Clin Cancer Res, 2022, 41(1): 328. DOI: 10.1186/s13046-022-02533-9.
doi: 10.1186/s13046-022-02533-9 |
[20] |
Yin J, Che G, Wang W, et al. Investigating the prognostic significance of pyroptosis-related genes in gastric cancer and their impact on cells' biological functions[J]. Front Oncol, 2022, 12: 861284. DOI: 10.3389/fonc.2022.861284.
doi: 10.3389/fonc.2022.861284 |
[21] |
Kim MS, Chang X, Yamashita K, et al. Aberrant promoter me-thylation and tumor suppressive activity of the DFNA5 gene in colorectal carcinoma[J]. Oncogene, 2008, 27(25): 3624-3634. DOI: 10.1038/sj.onc.1211021.
doi: 10.1038/sj.onc.1211021 pmid: 18223688 |
[22] |
Wu M, Wang Y, Yang D, et al. A PLK1 kinase inhibitor enhances the chemosensitivity of cisplatin by inducing pyroptosis in oesophageal squamous cell carcinoma[J]. EBioMedicine, 2019, 41: 244-255. DOI: 10.1016/j.ebiom.2019.02.012.
doi: S2352-3964(19)30084-2 pmid: 30876762 |
[23] |
Yu J, Li S, Qi J, et al. Cleavage of GSDME by caspase-3 determines lobaplatin-induced pyroptosis in colon cancer cells[J]. Cell Death Dis, 2019, 10(3): 193. DOI: 10.1038/s41419-019-1441-4.
doi: 10.1038/s41419-019-1441-4 pmid: 30804337 |
[24] |
Zhang X, Zhang P, An L, et al. Miltirone induces cell death in hepatocellular carcinoma cell through GSDME-dependent pyroptosis[J]. Acta Pharm Sin B, 2020, 10(8): 1397-1413. DOI: 10.1016/j.apsb.2020.06.015.
doi: 10.1016/j.apsb.2020.06.015 pmid: 32963939 |
[25] |
Kashyap D, Pal D, Sharma R, et al. Global increase in breast cancer incidence: risk factors and preventive measures[J]. Biomed Res Int, 2022, 2022: 9605439. DOI: 10.1155/2022/9605439.
doi: 10.1155/2022/9605439 |
[26] |
Garcia-Martinez L, Zhang Y, Nakata Y, et al. Epigenetic mechanisms in breast cancer therapy and resistance[J]. Nat Commun, 2021, 12(1): 1786. DOI: 10.1038/s41467-021-22024-3.
doi: 10.1038/s41467-021-22024-3 pmid: 33741974 |
[27] |
Zhang Z, Zhang H, Li D, et al. Caspase-3-mediated GSDME induced pyroptosis in breast cancer cells through the ROS/JNK signalling pathway[J]. J Cell Mol Med, 2021, 25(17): 8159-8168. DOI: 10.1111/jcmm.16574.
doi: 10.1111/jcmm.16574 pmid: 34369076 |
[28] |
Croes L, Beyens M, Fransen E, et al. Large-scale analysis of DFNA5 methylation reveals its potential as biomarker for breast cancer[J]. Clin Epigenetics, 2018, 10: 51. DOI: 10.1186/s13148-018-0479-y.
doi: 10.1186/s13148-018-0479-y |
[29] |
弓伟华. MCF7/Taxol细胞中DNA甲基化调控GSDME表达及在化疗耐药中的作用[D]. 郑州: 郑州大学, 2021. DOI: 10.27466/d.cnki.gzzdu.2021.002365.
doi: 10.27466/d.cnki.gzzdu.2021.002365 |
[30] |
Wang Y, Peng J, Mi X, et al. p53-GSDME elevation: a path for CDK7 inhibition to suppress breast cancer cell survival[J]. Front Mol Biosci, 2021, 8: 697457. DOI: 10.3389/fmolb.2021.697457.
doi: 10.3389/fmolb.2021.697457 |
[31] |
Zhou B, Zhang JY, Liu XS, et al. Tom20 senses iron-activated ROS signaling to promote melanoma cell pyroptosis[J]. Cell Res, 2018, 28(12): 1171-1185. DOI: 10.1038/s41422-018-0090-y.
doi: 10.1038/s41422-018-0090-y pmid: 30287942 |
[32] |
Zheng Z, Bian Y, Zhang Y, et al. Metformin activates AMPK/SIRT1/NF-κB pathway and induces mitochondrial dysfunction to drive caspase3/GSDME-mediated cancer cell pyroptosis[J]. Cell Cycle, 2020, 19(10): 1089-1104. DOI: 10.1080/15384101.2020.1743911.
doi: 10.1080/15384101.2020.1743911 pmid: 32286137 |
[33] |
Liu Y, Fang Y, Chen X, et al. Gasdermin E-mediated target cell pyroptosis by CAR T cells triggers cytokine release syndrome[J]. Sci Immunol, 2020, 5(43): eaax7969. DOI: 10.1126/sciimmunol.aax7969.
doi: 10.1126/sciimmunol.aax7969 |
[34] |
Berkel C, Cacan E. Differential expression and copy number variation of gasdermin (GSDM) family members, pore-forming proteins in pyroptosis, in normal and malignant serous ovarian tissue[J]. Inflammation, 2021, 44(6): 2203-2216. DOI: 10.1007/s10753-021-01493-0.
doi: 10.1007/s10753-021-01493-0 pmid: 34091823 |
[35] |
Kobayashi T, Mitsuhashi A, Hongying P, et al. Bexarotene-induced cell death in ovarian cancer cells through caspase-4-gasdermin E mediated pyroptosis[J]. Sci Rep, 2022, 12(1): 11123. DOI: 10.1038/s41598-022-15348-7.
doi: 10.1038/s41598-022-15348-7 pmid: 35778597 |
[36] |
李婷婷, 刘申平, 杜明. Gasdermin E多肽抑制剂对卵巢癌化疗诱导肠道损伤的改善作用[J]. 中国临床医学, 2022, 29(1): 35-41 DOI: 10.12025/j.issn.1008-6358.2022.20211121.
doi: 10.12025/j.issn.1008-6358.2022.20211121 |
[37] |
Tan G, Huang C, Chen J, et al. HMGB1 released from GSDME-mediated pyroptotic epithelial cells participates in the tumorigenesis of colitis-associated colorectal cancer through the ERK1/2 pathway[J]. J Hematol Oncol, 2020, 13(1): 149. DOI: 10.1186/s13045-020-00985-0.
doi: 10.1186/s13045-020-00985-0 |
[38] |
Shen X, Wang H, Weng C, et al. Caspase 3/GSDME-dependent pyroptosis contributes to chemotherapy drug-induced nephrotoxicity[J]. Cell Death Dis, 2021, 12(2): 186. DOI: 10.1038/s41419-021-03458-5.
doi: 10.1038/s41419-021-03458-5 pmid: 33589596 |
[39] |
Zhang Y, Chen X, Gueydan C, et al. Plasma membrane changes during programmed cell deaths[J]. Cell Res, 2018, 28(1): 9-21. DOI: 10.1038/cr.2017.133.
doi: 10.1038/cr.2017.133 pmid: 29076500 |
[1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲. 血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. |
[2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊. 局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[3] | 袁健, 黄燕华. Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. |
[4] | 陈红健, 张素青. 血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. |
[5] | 郭泽浩, 张俊旺. PFDN及其亚基在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2024, 51(6): 350-353. |
[6] | 张百红, 岳红云. 新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. |
[7] | 许凤琳, 吴刚. EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[8] | 王盈, 刘楠, 郭兵. 抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[9] | 张蕊, 褚衍六. 基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[10] | 高凡, 王萍, 杜超, 褚衍六. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[11] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东. ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. |
[12] | 刘静, 刘芹, 黄梅. 基于SMOTE算法的食管癌放化疗患者肺部感染的预后模型构建[J]. 国际肿瘤学杂志, 2024, 51(5): 267-273. |
[13] | 杨琳, 路宁, 温华, 张明鑫, 朱琳. 炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[14] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝. 癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
[15] | 张宁宁, 杨哲, 檀丽梅, 李振宁, 王迪, 魏永志. 宫颈细胞DNA倍体分析联合B7-H4和PKCδ对宫颈癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(5): 286-291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||