[1] |
Darnell M, Gu L, Mooney D. RNA-seq reveals diverse effects of substrate stiffness on mesenchymal stem cells[J]. Biomaterials, 2018, 181:182-188. DOI: 10.1016/j.biomaterials.2018.07.039.
doi: S0142-9612(18)30524-6
pmid: 30086447
|
[2] |
Fiejdasz S, Horak W, Lewandowska-Łańcucka J, et al. Tuning of elasticity and surface properties of hydrogel cell culture substrates by simple chemical approach[J]. J Colloid Interface Sci, 2018, 524:102-113. DOI: 10.1016/j.jcis.2018.04.004.
doi: 10.1016/j.jcis.2018.04.004
|
[3] |
Jiang T, Zhao J, Yu S, et al. Untangling the response of bone tumor cells and bone forming cells to matrix stiffness and adhesion ligand density by means of hydrogels[J]. Biomaterials, 2019, 188:130-143. DOI: 10.1016/j.biomaterials.2018.10.015.
doi: 10.1016/j.biomaterials.2018.10.015
|
[4] |
Eble JA, Niland S. The extracellular matrix in tumor progression and metastasis[J]. Clin Exp Metastasis, 2019, 36(3):171-198. DOI: 10.1007/s10585-019-09966-1.
doi: 10.1007/s10585-019-09966-1
|
[5] |
Munoz A, Eldridge WJ, Jakobsen NM, et al. Corrigendum: cellular shear stiffness reflects progression of arsenic-induced transformation during G1[J]. Carcinogenesis, 2019, 40(10):1298. DOI: 10.1093/carcin/bgz048.
doi: 10.1093/carcin/bgz048
|
[6] |
Shukla VC, Higuita-Castro N, Nana-Sinkam P, et al. Substrate stiffness modulates lung cancer cell migration but not epithelial to mesenchymal transition[J]. J Biomed Mater Res A, 2016, 104(5):1182-1193. DOI: 10.1002/jbm.a.35655.
doi: 10.1002/jbm.a.35655
pmid: 26779779
|
[7] |
Qin X, Lv X, Li P, et al. Matrix stiffness modulates ILK-mediated YAP activation to control the drug resistance of breast cancer cells[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(3):165625. DOI: 10.1016/j.bbadis.2019.165625.
doi: 10.1016/j.bbadis.2019.165625
|
[8] |
焦思萌, 赵轩宇, 宋丹, 等. 基底刚度对人宫颈癌HeLa细胞增殖及顺铂药物敏感性影响的体外研究[J]. 癌症进展, 2019, 17(22):2642-2644, 2651. DOI: 10.11877/j.issn.1672-1535.2019.17.22.09.
doi: 10.11877/j.issn.1672-1535.2019.17.22.09
|
[9] |
Wang W, Lollis EM, Bordeleau F, et al. Matrix stiffness regulates vascular integrity through focal adhesion kinase activity[J]. FASEB J, 2019, 33(1):1199-1208. DOI: 10.1096/fj.201800841R.
doi: 10.1096/fj.201800841R
|
[10] |
Chae YC, Kim JH. Cancer stem cell metabolism: target for cancer therapy[J]. BMB Rep, 2018, 51(7):319-326. DOI: 10.5483/bmbrep.2018.51.7.112.
doi: 10.5483/bmbrep.2018.51.7.112
|
[11] |
Chen Z, Zhu P, Zhang Y, et al. Enhanced sensitivity of cancer stem cells to chemotherapy using functionalized mesoporous silica nanoparticles[J]. Mol Pharm, 2016, 13(8):2749-2759. DOI: 10.1021/acs.molpharmaceut.6b00352.
doi: 10.1021/acs.molpharmaceut.6b00352
|
[12] |
Wang Y, Jiang F, Jiao K, et al. De-methylation of miR-148a by arsenic trioxide enhances sensitivity to chemotherapy via inhibiting the NF-κB pathway and CSC like properties[J]. Exp Cell Res, 2020, 386(2):111739. DOI: 10.1016/j.yexcr.2019.111739.
doi: 10.1016/j.yexcr.2019.111739
|
[13] |
Hu J, Li J, Yue X, et al. Targeting BCRP/ABCG2 by RNA interference enhances the chemotherapy sensitivity of human colon cancer side population cells[J]. J Huazhong Univ Sci Technolog Med Sci, 2017, 37(2):231-236. DOI: 10.1007/s11596-017-1720-1.
doi: 10.1007/s11596-017-1720-1
|
[14] |
Hui L, Zhang J, Ding X, et al. Matrix stiffness regulates the proli-feration, stemness and chemoresistance of laryngeal squamous cancer cells[J]. Int J Oncol, 2017, 50(4):1439-1447. DOI: 10.3892/ijo.2017.3877.
doi: 10.3892/ijo.2017.3877
|
[15] |
Amawi H, Sim HM, Tiwari AK, et al. ABC transporter-mediated multidrug-resistant cancer[J]. Adv Exp Med Biol, 2019, 1141:549-580. DOI: 10.1007/978-981-13-7647-4_12.
doi: 10.1007/978-981-13-7647-4_12
|
[16] |
Robey RW, Pluchino KM, Hall MD, et al. Revisiting the role of ABC transporters in multidrug-resistant cancer[J]. Nat Rev Cancer, 2018, 18(7):452-464. DOI: 10.1038/s41568-018-0005-8.
doi: 10.1038/s41568-018-0005-8
|
[17] |
Sicchieri RD, da Silveira WA, Mandarano LR, et al. ABCG2 is a potential marker of tumor-initiating cells in breast cancer[J]. Tumour Biol, 2015, 36(12):9233-9243. DOI: 10.1007/s13277-015-3647-0.
doi: 10.1007/s13277-015-3647-0
|
[18] |
You Y, Zheng Q, Dong Y, et al. Matrix stiffness-mediated effects on stemness characteristics occurring in HCC cells[J]. Oncotarget, 2016, 7(22):32221-32231. DOI: 10.18632/oncotarget.8515.
doi: 10.18632/oncotarget.8515
|
[19] |
De Ruysscher D, Niedermann G, Burnet NG, et al. Radiotherapy toxicity[J]. Nat Rev Dis Primers, 2019, 5(1):13. DOI: 10.1038/s41572-019-0064-5.
doi: 10.1038/s41572-019-0064-5
pmid: 30792503
|
[20] |
Cree A, O'Donovan A, O'Hanlon S. New horizons in radiotherapy for older people[J]. Age Ageing, 2019, 48(5):605-612. DOI: 10.1093/ageing/afz089.
doi: 10.1093/ageing/afz089
|
[21] |
Panzetta V, Verde G, Pugliese M, et al. Adhesion and migration response to radiation therapy of mammary epithelial and adenocarcinoma cells interacting with different stiffness substrates[J]. Cancers (Basel), 2020, 12(5):1170. DOI: 10.3390/cancers12051170.
doi: 10.3390/cancers12051170
|
[22] |
Lacombe J, Harris AF, Zenhausern R, et al. Plant-based scaffolds modify cellular response to drug and radiation exposure compared to standard cell culture models[J]. Front Bioeng Biotechnol, 2020, 8:932. DOI: 10.3389/fbioe.2020.00932.
doi: 10.3389/fbioe.2020.00932
|
[23] |
Bruix J, Qin S, Merle P, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet, 2017, 389(10064):56-66. DOI: 10.1016/S0140-6736(16)32453-9.
doi: 10.1016/S0140-6736(16)32453-9
|
[24] |
Gao J, Rong Y, Huang Y, et al. Cirrhotic stiffness affects the migration of hepatocellular carcinoma cells and induces sorafenib resis-tance through YAP[J]. J Cell Physiol, 2019, 234(3):2639-2648. DOI: 10.1002/jcp.27078.
doi: 10.1002/jcp.27078
|