国际肿瘤学杂志 ›› 2021, Vol. 48 ›› Issue (7): 445-448.doi: 10.3760/cma.j.cn371439-20201019-00086
• 肠道微生物与肿瘤 • 上一篇
收稿日期:
2020-10-19
修回日期:
2021-04-13
出版日期:
2021-07-08
发布日期:
2021-07-26
通讯作者:
郭智
E-mail:guozhi77@126.com
基金资助:
Received:
2020-10-19
Revised:
2021-04-13
Online:
2021-07-08
Published:
2021-07-26
Contact:
Guo Zhi
E-mail:guozhi77@126.com
Supported by:
摘要:
近年来宏基因组学测序技术研究发现,肠道微生物群的组成和多样性的变化与血液肿瘤的发生发展有关,肠道微生物群影响造血系统的发育,同时也影响血液肿瘤的预后分层。肠道微生物易位在血流感染中起着重要作用,肠道菌群失调和血流感染影响血液肿瘤的治疗效果,使用益生菌和粪菌移植可恢复肠道菌群的多样性。
韦丽娅, 郭智. 肠道微生物群与血液肿瘤[J]. 国际肿瘤学杂志, 2021, 48(7): 445-448.
Wei Liya, Guo Zhi. Gut microbiota and hematological malignancies[J]. Journal of International Oncology, 2021, 48(7): 445-448.
[1] |
Lynch SV, Pedersen O. The human intestinal microbiome in health and disease[J]. N Engl J Med, 2016, 375(24):2369-2379. DOI: 10.1056/NEJMra1600266.
doi: 10.1056/NEJMra1600266 |
[2] |
Josefsdottir KS, Baldridge MT, Kadmon CS, et al. Antibiotics impair murine hematopoiesis by depleting the intestinal microbiota[J]. Blood, 2017, 129(6):729-739. DOI: 10.1182/blood-2016-03-708594.
doi: 10.1182/blood-2016-03-708594 pmid: 27879260 |
[3] |
Staffas A, Burgos da Silva M, Slingerland AE, et al. Nutritional support from the intestinal microbiota improves hematopoietic reconstitution after bone marrow transplantation in mice[J]. Cell Host Microbe, 2018, 23(4):447-457, e4. DOI: 10.1016/j.chom.2018.03.002.
doi: S1931-3128(18)30099-4 pmid: 29576480 |
[4] |
Jain S, Ward JM, Shin DM, et al. Associations of autoimmunity, immunodeficiency, lymphomagenesis, and gut microbiota in mice with knockins for a pathogenic autoantibody[J]. Am J Pathol, 2017, 187(9):2020-2033. DOI: 10.1016/j.ajpath.2017.05.017.
doi: 10.1016/j.ajpath.2017.05.017 |
[5] |
Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation[J]. Cell, 2014, 157(1):121-141. DOI: 10.1016/j.cell.2014.03.011.
doi: 10.1016/j.cell.2014.03.011 |
[6] |
Schloss PD, Westcott SL. Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis[J]. Appl Environ Microbiol, 2011, 77(10):3219-3226. DOI: 10.1128/AEM.02810-10.
doi: 10.1128/AEM.02810-10 |
[7] |
Vijayvargiya P, Jeraldo PR, Thoendel MJ, et al. Application of me-tagenomic shotgun sequencing to detect vector-borne pathogens in clinical blood samples[J]. PLoS One, 2019, 14(10):e0222915. DOI: 10.1371/journal.pone.0222915.
doi: 10.1371/journal.pone.0222915 |
[8] |
Dulanto Chiang A, Dekker JP. From the pipeline to the bedside: advances and challenges in clinical metagenomics[J]. J Infect Dis, 2020, 221(Suppl 3):S331-S340. DOI: 10.1093/infdis/jiz151.
doi: 10.1093/infdis/jiz151 |
[9] |
Ten Hoopen P, Finn RD, Bongo LA, et al. The metagenomic data life-cycle: standards and best practices[J]. Gigascience, 2017, 6(8):1-11. DOI: 10.1093/gigascience/gix047.
doi: 10.1093/gigascience/gix047 pmid: 28637310 |
[10] |
Song Y, Gyarmati P. Optimized detection of bacteria in bloodstream infections[J]. PLoS One, 2019, 14(6):e0219086. DOI: 10.1371/journal.pone.0219086.
doi: 10.1371/journal.pone.0219086 |
[11] |
Song Y, Giske CG, Gille-Johnson P, et al. Nuclease-assisted suppression of human DNA background in sepsis[J]. PLoS One, 2014, 9(7):e103610. DOI: 10.1371/journal.pone.0103610.
doi: 10.1371/journal.pone.0103610 |
[12] |
Gijavanekar C, Strych U, Fofanov Y, et al. Rare target enrichment for ultrasensitive PCR detection using cot-rehybridization and duplex-specific nuclease[J]. Anal Biochem, 2012, 421(1):81-85. DOI: 10.1016/j.ab.2011.11.010.
doi: 10.1016/j.ab.2011.11.010 pmid: 22155054 |
[13] |
Hakim H, Dallas R, Wolf J, et al. Gut microbiome composition predicts infection risk during chemotherapy in children with acute lymphoblastic leukemia[J]. Clin Infect Dis, 2018, 67(4):541-548. DOI: 10.1093/cid/ciy153.
doi: 10.1093/cid/ciy153 pmid: 29518185 |
[14] |
Tims S, Derom C, Jonkers DM, et al. Microbiota conservation and BMI signatures in adult monozygotic twins[J]. ISME J, 2013, 7(4):707-717. DOI: 10.1038/ismej.2012.146.
doi: 10.1038/ismej.2012.146 |
[15] |
Nearing JT, Connors J, Whitehouse S, et al. Infectious complications are associated with alterations in the gut microbiome in pediatric patients with acute lymphoblastic leukemia[J]. Front Cell Infect Microbiol, 2019, 9:28. DOI: 10.3389/fcimb.2019.00028.
doi: 10.3389/fcimb.2019.00028 |
[16] |
Montassier E, Gastinne T, Vangay P, et al. Chemotherapy-driven dysbiosis in the intestinal microbiome[J]. Aliment Pharmacol Ther, 2015, 42(5):515-528. DOI: 10.1111/apt.13302.
doi: 10.1111/apt.2015.42.issue-5 |
[17] |
Kaysen A, Heintz-Buschart A, Muller EEL, et al. Integrated meta-omic analyses of the gastrointestinal tract microbiome in patients undergoing allogeneic hematopoietic stem cell transplantation[J]. Transl Res, 2017, 186:79-94, e1. DOI: 10.1016/j.trsl.2017.06.008.
doi: S1931-5244(17)30069-5 pmid: 28686852 |
[18] | Valdes AM, Walter J, Segal E, et al. Role of the gut microbiota in nutrition and health[J]. BMJ, 2018, 361:k2179. DOI: 10.1136/bmj.k2179. |
[19] |
Galloway-Peña JR, SmithD P, Sahasrabhojane P, et al. The role of the gastrointestinal microbiome in infectious complications during induction chemotherapy for acute myeloid leukemia[J]. Cancer, 2016, 122(14):2186-2196. DOI: 10.1002/cncr.30039.
doi: 10.1002/cncr.30039 pmid: 27142181 |
[20] |
Bindels LB, Neyrinck AM, Salazar N, et al. Non digestible oligosaccharides modulate the gut microbiota to control the development of leukemia and associated cachexia in mice[J]. PLoS One, 2015, 10(6):e0131009. DOI: 10.1371/journal.pone.0131009.
doi: 10.1371/journal.pone.0131009 |
[21] |
Feld R. Bloodstream source in cancer patients with febrile neutropenia[J]. Int J Antimicrob Agents, 2008, 32 Suppl 1: S30-S33. DOI: 10.1016/j.ijantimicag.2008.06.017.
doi: 10.1016/j.ijantimicag.2008.06.017 |
[22] |
Cheroutre H, Lambolez F, Mucida D. The light and dark sides of intestinal intraepithelial lymphocytes[J]. Nat Rev Immunol, 2011, 11(7):445-456. DOI: 10.1038/nri3007.
doi: 10.1038/nri3007 |
[23] |
Galloway-Peña JR, Smith DP, Sahasrabhojane P, et al. Characte-rization of oral and gut microbiome temporal variability in hospitalized cancer patients[J]. Genome Med, 2017, 9(1):21. DOI: 10.1186/s13073-017-0409-1.
doi: 10.1186/s13073-017-0409-1 pmid: 28245856 |
[24] |
Desai MS, Seekatz AM, Koropatkin NM, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility[J]. Cell, 2016, 167(5):1339-1353, e21. DOI: 10.1016/j.cell.2016.10.043.
doi: 10.1016/j.cell.2016.10.043 |
[25] |
Lähteenmäki K, Wacklin P, Taskinen M, et al. Haematopoietic stem cell transplantation induces severe dysbiosis in intestinal microbiota of paediatric ALL patients[J]. Bone Marrow Transplant, 2017, 52(10):1479-1482. DOI: 10.1038/bmt.2017.168.
doi: 10.1038/bmt.2017.168 |
[26] |
Ingham AC, Kielsen K, Cilieborg MS, et al. Specific gut micro-biome members are associated with distinct immune markers in pediatric allogeneic hematopoietic stem cell transplantation[J]. Microbiome, 2019, 7(1):131. DOI: 10.1186/s40168-019-0745-z.
doi: 10.1186/s40168-019-0745-z |
[27] |
Kusakabe S, Fukushima K, Maeda T, et al. Pre- and post-serial metagenomic analysis of gut microbiota as a prognostic factor in patients undergoing haematopoietic stem cell transplantation[J]. Br J Haematol, 2020, 188(3):438-449. DOI: 10.1111/bjh.16205.
doi: 10.1111/bjh.v188.3 |
[28] | Peled JU, Devlin SM, Staffas A, et al. Intestinal microbiota and relapse after hematopoietic-cell transplantation[J]. J Clin Oncol, 2017, 35(15):1650-1659. DOI: 10.1200/JCO.2016.70.3348. |
[29] |
Khoruts A, Hippen KL, Lemire AM, et al. Toward revision of antimicrobial therapies in hematopoietic stem cell transplantation: target the pathogens, but protect the indigenous microbiota[J]. Transl Res, 2017, 179:116-125. DOI: 10.1016/j.trsl.2016.07.013.
doi: 10.1016/j.trsl.2016.07.013 |
[30] |
Montassier E, Al-Ghalith GA, Ward T, et al. Pretreatment gut microbiome predicts chemotherapy-related bloodstream infection[J]. Genome Med, 2016, 8(1):49. DOI: 10.1186/s13073-016-0301-4.
doi: 10.1186/s13073-016-0301-4 pmid: 27121964 |
[31] |
Biagi E, Zama D, Rampelli S, et al. Early gut microbiota signature of aGvHD in children given allogeneic hematopoietic cell transplantation for hematological disorders[J]. BMC Med Genomics, 2019, 12(1):49. DOI: 10.1186/s12920-019-0494-7.
doi: 10.1186/s12920-019-0494-7 |
[32] |
Reyna-Figueroa J, Barrón-Calvillo E, García-Parra C, et al. Pro-biotic supplementation decreases chemotherapy-induced gastrointestinal side effects in patients with acute leukemia[J]. J Pediatr Hematol Oncol, 2019, 41(6):468-472. DOI: 10.1097/MPH.000000-0000001497.
doi: 10.1097/MPH.0000000000001497 |
[33] |
Bindels LB, Beck R, Schakman O, et al. Restoring specific lactobacilli levels decreases inflammation and muscle atrophy markers in an acute leukemia mouse model[J]. PLoS One, 2012, 7(6):e37971. DOI: 10.1371/journal.pone.0037971.
doi: 10.1371/journal.pone.0037971 |
[34] |
Wei W, Sun W, Yu S, et al. Butyrate production from high-fiber diet protects against lymphoma tumor[J]. Leuk Lymphoma, 2016, 57(10):2401-2408. DOI: 10.3109/10428194.2016.1144879.
doi: 10.3109/10428194.2016.1144879 |
[35] | 中国抗癌协会肿瘤与微生态专业委员会. 肠道微生态与造血干细胞移植相关性中国专家共识[J]. 国际肿瘤学杂志, 2021, 48(3):129-135. DOI: 10.3760/cma.j.cn371439-20210202-00027. |
[36] |
McDonald LC, Gerding DN, Johnson S, et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA)[J]. Clin Infect Dis, 2018, 66(7):e1-e48. DOI: 10.1093/cid/cix1085.
doi: 10.1093/cid/cix1085 |
[37] |
Innes AJ, Mullish BH, Fernando F, et al. Faecal microbiota transplant: a novel biological approach to extensively drug-resistant organism-related non-relapse mortality[J]. Bone Marrow Transplant, 2017, 52(10):1452-1454. DOI: 10.1038/bmt.2017.151.
doi: 10.1038/bmt.2017.151 |
[38] |
Biliński J, Grzesiowski P, Muszyński J, et al. Fecal microbiota transplantation inhibits multidrug-resistant gut pathogens: preliminary report performed in an immunocompromised host[J]. Arch Immunol Ther Exp (Warsz), 2016, 64(3):255-258. DOI: 10.1007/s00005-016-0387-9.
doi: 10.1007/s00005-016-0387-9 |
[39] |
de Castro CG Jr, Ganc AJ, Ganc RL, et al. Fecal microbiota transplant after hematopoietic SCT: report of a successful case[J]. Bone Marrow Transplant, 2015, 50(1):145. DOI: 10.1038/bmt.2014.212.
doi: 10.1038/bmt.2014.212 |
[40] |
Kaito S, Toya T, Yoshifuji K, et al. Fecal microbiota transplantation with frozen capsules for a patient with refractory acute gut graft-versus-host disease[J]. Blood Adv, 2018, 2(22):3097-3101. DOI: 10.1182/bloodadvances.2018024968.
doi: 10.1182/bloodadvances.2018024968 |
[1] | 钱晓涛, 石子宜, 胡格, 吴晓维. Ⅲ~ⅣA期食管鳞状细胞癌放化疗后行巩固化疗的疗效:一项真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(6): 326-331. |
[2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊. 局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[3] | 张百红, 岳红云. 新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. |
[4] | 许凤琳, 吴刚. EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[5] | 王盈, 刘楠, 郭兵. 抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[6] | 王培鑫, 赵军, 徐世红, 姜朝阳, 王小强, 杨红娟. 铁死亡相关机制在骨肉瘤中的应用进展[J]. 国际肿瘤学杂志, 2024, 51(5): 308-311. |
[7] | 王昆, 周中新, 臧其威. 血清TGF-β1、VEGF水平对非小细胞肺癌患者单孔胸腔镜根治术后复发的预测价值[J]. 国际肿瘤学杂志, 2024, 51(4): 198-203. |
[8] | 萨蔷, 徐航程, 王佳玉. 乳腺癌免疫治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 227-234. |
[9] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙. 肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. |
[10] | 王子豪, 王宇, 杨鑫, 何艺, 莫兴奎, 袁涛. 铁死亡在骨肉瘤中的分子机制及相关治疗的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 239-244. |
[11] | 张栋岩, 王品, 魏秋亚, 邓成伍, 魏相相, 高远飞, 王琛. 索凡替尼靶向联合卡培他滨和奥沙利铂治疗肝内胆管癌术后患者1例及文献复习[J]. 国际肿瘤学杂志, 2024, 51(4): 249-253. |
[12] | 严爱婷, 王翠竹, 刘春桂, 鲁小敏. 卡瑞利珠单抗与信迪利单抗治疗晚期非小细胞肺癌的临床疗效及安全性分析[J]. 国际肿瘤学杂志, 2024, 51(3): 137-142. |
[13] | 彭琴, 蔡玉婷, 王伟. KPNA2在肝癌中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 181-185. |
[14] | 岳红云, 张百红. 肿瘤的分化治疗[J]. 国际肿瘤学杂志, 2024, 51(2): 109-113. |
[15] | 滕远, 李莉娟, 张连生. MCL-1及其抑制剂在血液恶性肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 119-122. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||