国际肿瘤学杂志 ›› 2021, Vol. 48 ›› Issue (4): 220-224.doi: 10.3760/cma.j.cn371439-20200722-00044
收稿日期:
2020-07-22
修回日期:
2020-12-07
出版日期:
2021-04-08
发布日期:
2021-06-18
通讯作者:
黄俊星
E-mail:hjxtz@sina.cn
基金资助:
Received:
2020-07-22
Revised:
2020-12-07
Online:
2021-04-08
Published:
2021-06-18
Contact:
Huang Junxing
E-mail:hjxtz@sina.cn
Supported by:
摘要:
免疫检查点抑制剂成为近年来肿瘤治疗的热点,越来越多的肿瘤患者从免疫治疗中获益。由于免疫治疗费用较高,未检测人群免疫治疗获益率仅为20%。因此,精准地选择预测性生物标志物对于肿瘤患者个体化免疫治疗至关重要。反映肿瘤免疫微环境和肿瘤细胞内在特征的生物标志物,如程序性死亡蛋白1(PD-1)及其配体PD-L1、肿瘤突变负荷、微卫星不稳定性等,均已被证实与抗PD-1/PD-L1治疗效果相关。同时,基于组织和血清的标志物层出不穷,如何真正实现精确的肿瘤免疫治疗仍有待进一步临床研究。
李谡瑶, 黄俊星. 肿瘤免疫治疗疗效预测标志物的研究进展[J]. 国际肿瘤学杂志, 2021, 48(4): 220-224.
Li Suyao, Huang Junxing. Research progress of biomarkers for predicting the efficacy of immunotherapy for tumor[J]. Journal of International Oncology, 2021, 48(4): 220-224.
[1] |
Yu S, Li A, Liu Q, et al. Chimeric antigen receptor T cells: a novel therapy for solid tumors[J]. J Hematol Oncol, 2017, 10(1):78. DOI: 10.1186/s13045-017-0444-9.
doi: 10.1186/s13045-017-0444-9 |
[2] |
Yu S, Liu Q, Han X, et al. Development and clinical application of anti-HER2 monoclonal and bispecific antibodies for cancer treatment[J]. Exp Hematol Oncol, 2017, 6:31. DOI: 10.1186/s40164-017-0091-4.
doi: 10.1186/s40164-017-0091-4 |
[3] |
Peng M, Mo Y, Wang Y, et al. Neoantigen vaccine: an emerging tumorimmunotherapy[J]. Mol Cancer, 2019, 18(1):128. DOI: 10.1186/s12943-019-1055-6.
doi: 10.1186/s12943-019-1055-6 |
[4] |
Killock D. Skin cancer: T-VEC oncolytic viral therapy shows promise in melanoma[J]. Nat Rev Clin Oncol, 2015, 12(8):438. DOI: 10.1038/nrclinonc.2015.106.
doi: 10.1038/nrclinonc.2015.106 pmid: 26077044 |
[5] |
Li B, Chan HL, Chen P. Immune checkpoint inhibitors: basics and challenges[J]. Curr Med Chem, 2019, 26(17):3009-3025. DOI: 10.2174/0929867324666170804143706.
doi: 10.2174/0929867324666170804143706 |
[6] |
Balar AV, Castellano D, O'Donnell PH, et al. First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): a multicentre, single-arm, phase 2 study[J]. Lancet Oncol, 2017, 18(11):1483-1492. DOI: 10.1016/S1470-2045(17)30616-2.
doi: 10.1016/S1470-2045(17)30616-2 |
[7] | Valsecchi ME. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma[J]. N Engl J Med, 2015, 373(13): 1270. DOI: 10.1056/NEJMc1509660. |
[8] |
Hodi FS, Chiarion-Sileni V, Gonzalez R, et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, rando-mised, phase 3 trial[J]. Lancet Oncol, 2018, 19(11):1480-1492. DOI: 10.1016/S1470-2045(18)30700-9.
doi: 10.1016/S1470-2045(18)30700-9 |
[9] |
Rittmeyer A, Barlesi F, Waterkamp D, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomized controlled trial[J]. Lancet, 2017, 389(10066):255-265. DOI: 10.1016/S0140-6736(16)32517-X.
doi: S0140-6736(16)32517-X pmid: 27979383 |
[10] |
Reck M, Rodríguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer[J]. N Engl J Med, 2016, 375(19):1823-1833. DOI: 10.1056/NEJMoa1606774.
doi: 10.1056/NEJMoa1606774 |
[11] |
Mansfield AS, Aubry MC, Moser JC, et al. Temporal and spatial discordance of programmed cell death-ligand 1 expression and lymphocyte tumor infiltration between paired primary lesions and brain metastases in lung cancer[J]. Ann Oncol, 2016, 27(10):1953-1958. DOI: 10.1093/annonc/mdw289.
doi: 10.1093/annonc/mdw289 |
[12] |
Zhou J, Gong Z, Jia Q, et al. Programmed death ligand 1 expression and CD8+ tumor-infiltrating lymphocyte density differences between paired primary and brain metastatic lesions in non-small cell lung cancer [J]. Biochem Biophys Res Commun, 2018, 498(4):751-757. DOI: 10.1016/j.bbrc.2018.03.053.
doi: 10.1016/j.bbrc.2018.03.053 |
[13] | Tímár J, Ladányi A. A daganatok immunterápiájának prediktív markerei, a PD-L1-meghatározás gyakorlati kérdései [Predictive markers of immunotherapy of cancer, practical issues of PD-L1 testing][J]. Magy Onkol, 2017, 61(2):158-166. |
[14] |
Gupta D, Heinen CD. The mismatch repair-dependent DNA damage response: mechanisms and implications[J]. DNA Repair (Amst), 2019, 78:60-69. DOI: 10.1016/j.dnarep.2019.03.009.
doi: 10.1016/j.dnarep.2019.03.009 |
[15] |
Yuza K, Nagahashi M, Watanabe S, et al. Hypermutation and microsatellite instability in gastrointestinal cancers[J]. Oncotarget, 2017, 8(67):112103-112115. DOI: 10.18632/oncotarget.22783.
doi: 10.18632/oncotarget.v8i67 |
[16] |
Kim ST, Klempner SJ, Park SH, et al. Correlating programmed death ligand 1 (PD-L1) expression, mismatch repair deficiency, and outcomes across tumor types: implications for immunotherapy[J]. Oncotarget, 2017, 8(44):77415-77423. DOI: 10.18632/oncotarget.20492.
doi: 10.18632/oncotarget.v8i44 |
[17] |
Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade[J]. Science, 2017, 357(6349):409-413. DOI: 10.1126/science.aan6733.
doi: 10.1126/science.aan6733 |
[18] |
Jin Z, Yoon HH. The promise of PD-1 inhibitors in gastro-esopha-geal cancers: microsatellite instability vs. PD-L1[J]. J Gastrointest Oncol, 2016, 7(5):771-788. DOI: 10.21037/jgo.2016.08.06.
doi: 10.21037/jgo |
[19] | Chang L, Chang M, Chang HM, et al. Microsatellite instability: a predictive biomarker for cancer immunotherapy[J]. Appl Immunohistochem Mol Morphol, 2018, 26(2):e15-e21. DOI: 10.1097/PAI.0000000000000575. |
[20] |
Chen C, Zhang F, Zhou N, et al. Efficacy and safety of immune checkpoint inhibitors in advanced gastric or gastroesophageal junction cancer: a systematic review and meta-analysis[J]. Oncoimmunology, 2019, 8(5):e1581547. DOI: 10.1080/2162402X.2019.1581547.
doi: 10.1080/2162402X.2019.1581547 |
[21] |
Mills AM, Dill EA, Moskaluk CA, et al. The relationship between mismatch repair deficiency and PD-L1 expression in breast carcinoma[J]. Am J Surg Pathol, 2018, 42(2):183-191. DOI: 10.1097/PAS.0000000000000949.
doi: 10.1097/PAS.0000000000000949 |
[22] |
El Jabbour T, Ross JS, Sheehan CE, et al. PD-L1 protein expression in tumour cells and immune cells in mismatch repair protein-deficient and -proficient colorectal cancer: the foundation study using the SP142 antibody and whole section immunohistochemistry[J]. J Clin Pathol, 2018, 71(1):46-51. DOI: 10.1136/jclinpath-2017-204525.
doi: 10.1136/jclinpath-2017-204525 |
[23] |
Rooney MS, Shukla SA, Wu CJ, et al. Molecular and genetic pro-perties of tumors associated with local immune cytolytic activity[J]. Cell, 2015, 160(1- 2):48-61. DOI: 10.1016/j.cell.2014.12.033.
doi: 10.1016/j.cell.2014.12.036 |
[24] | Ott PA, Bang YJ, Piha-Paul SA, et al. T-cell-inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028[J]. J Clin Oncol, 2019, 37(4):318-327. DOI: 10.1200/JCO.2018.78.2276. |
[25] |
Chan TA, Yarchoan M, Jaffee E, et al. Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic[J]. Ann Oncol, 2019, 30(1):44-56. DOI: 10.1093/annonc/mdy495.
doi: 10.1093/annonc/mdy495 |
[26] |
Samstein RM, Lee CH, Shoushtari AN, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types[J]. Nat Genet, 2019, 51(2):202-206. DOI: 10.1038/s41588-018-0312-8.
doi: 10.1038/s41588-018-0312-8 |
[27] |
Carbone DP, Reck M, Paz-Ares L, et al. First-line nivolumab in stage Ⅳ or recurrent non-small-cell lung cancer[J]. N Engl J Med, 2017, 376(25):2415-2426. DOI: 10.1056/NEJMoa1613493.
doi: 10.1056/NEJMoa1613493 |
[28] | Krieg C, Nowicka M, Guglietta S, et al. High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy[J]. Nat Med, 2018, 24(2):144-153. DOI: 10.1038/nm.4466. |
[29] |
Kamphorst AO, Pillai RN, Yang S, et al. Proliferation of PD-1+ CD8 T cells in peripheral blood after PD-1-targeted therapy in lung cancer patients [J]. Proc Natl Acad Sci U S A, 2017, 114(19):4993-4998. DOI: 10.1073/pnas.1705327114.
doi: 10.1073/pnas.1705327114 |
[30] |
Fujisawa Y, Yoshino K, Otsuka A, et al. Baseline neutrophil to lymphocyte ratio combined with serum LDH level associated with outcome of nivolumab immunotherapy in a Japanese advanced melanoma population[J]. Br J Dermatol, 2018, 179(1):213-215. DOI: 10.1111/bjd.16427.
doi: 10.1111/bjd.16427 |
[31] | Soyano AE, Dholaria B, Marin-Acevedo JA, et al. Peripheral blood biomarkers correlate with outcomes in advanced non-small cell lung cancer patients treated with anti-PD-1 antibodies[J]. J Immunother Cancer, 2018, 6(1): 129. DOI: 10.1186/s40425-018-0447-2. |
[32] |
Tanizaki J, Haratani K, Hayashi H, et al. Peripheral blood biomarkers associated with clinical outcome in non-small cell lung cancer patients treated with nivolumab[J]. J Thorac Oncol, 2018, 13(1):97-105. DOI: 10.1016/j.jtho.2017.10.030.
doi: S1556-0864(17)33008-3 pmid: 29170120 |
[33] |
Mitsuhashi A, Okuma Y. Perspective on immune oncology with liquid biopsy, peripheral blood mononuclear cells, and microbiome with noninvasive biomarkers in cancer patients[J]. Clin Transl Oncol, 2018, 20(8):966-974. DOI: 10.1007/s12094-017-1827-7.
doi: 10.1007/s12094-017-1827-7 pmid: 29313208 |
[34] |
Caponnetto S, Iannantuono GM, Barchiesi G, et al. Prolactin as a potential early predictive factor in metastatic non-small cell lung cancer patients treated with nivolumab[J]. Oncology, 2017, 93(1):62-66. DOI: 10.1159/000464328.
doi: 10.1159/000464328 pmid: 28407622 |
[35] |
Yamazaki N, Kiyohara Y, Uhara H, et al. Cytokine biomarkers to predict antitumor responses to nivolumab suggested in a phase 2 study for advanced melanoma[J]. Cancer Sci, 2017, 108(5):1022-1031. DOI: 10.1111/cas.13226.
doi: 10.1111/cas.13226 |
[36] |
Ilié M, Szafer-Glusman E, Hofman V, et al. Detection of PD-L1 in circulating tumor cells and white blood cells from patients with advanced non-small-cell lung cancer[J]. Ann Oncol, 2018, 29(1):193-199. DOI: 10.1093/annonc/mdx636.
doi: 10.1093/annonc/mdx636 |
[37] |
Cabel L, Proudhon C, Romano E, et al. Clinical potential of circulating tumour DNA in patients receiving anticancer immunotherapy[J]. Nat Rev Clin Oncol, 2018, 15(10):639-650. DOI: 10.1038/s41571-018-0074-3.
doi: 10.1038/s41571-018-0074-3 pmid: 30050094 |
[38] |
Abbosh C, Birkbak NJ, Wilson GA, et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution[J] Nature, 2017, 545(7655):446-451. DOI: 10.1038/nature22364.
doi: 10.1038/nature22364 |
[39] | Tucci M, Passarelli A, Mannavola F, et al. Serum exosomes as predictors of clinical response to ipilimumab in metastatic melanoma Oncoimmunology, 2017, 7(2):e1387706. DOI: 10.1080/2162402X.2017.1387706. |
[40] |
Syn NL, Wang L, Chow EK, et al. Exosomes in cancer nanomedicine and immunotherapy: prospects and challenges[J]. Trends Biotechnol, 2017, 35(7):665-676. DOI: 10.1016/j.tibtech.2017.03.004.
doi: 10.1016/j.tibtech.2017.03.004 |
[41] |
McKendry RT, Spalluto CM, Burke H, et al. Dysregulation of antiviral function of CD8(+) T cells in the chronic obstructive pulmonary disease lung. Role of the PD-1-PD-L1 axis[J]. Am J Respir Crit Care Med, 2016, 193(6):642-651. DOI: 10.1164/rccm.201504-0782OC.
doi: 10.1164/rccm.201504-0782OC |
[42] |
Biton J, Ouakrim H, Dechartres A, et al. Impaired tumor-infiltrating T cells in patients with COPD impacts lung cancer response to PD-1 blockade[J]. Am J Respir Crit Care Med, 2018, 198(7):928-940. DOI: 10.1164/rccm.201706-1110OC.
doi: 10.1164/rccm.201706-1110OC |
[43] |
Yi M, Yu S, Qin S, et al. Gut microbiome modulates efficacy of immune checkpoint inhibitors[J]. J Hematol Oncol, 2018, 11(1):47. DOI: 10.1186/s13045-018-0592-6.
doi: 10.1186/s13045-018-0592-6 |
[44] |
Matson V, Fessler J, Bao R, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients[J]. Science, 2018, 359(6371):104-108. DOI: 10.1126/science.aao3290.
doi: 10.1126/science.aao3290 |
[1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲. 血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. |
[2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊. 局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[3] | 袁健, 黄燕华. Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. |
[4] | 陈红健, 张素青. 血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. |
[5] | 郭泽浩, 张俊旺. PFDN及其亚基在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2024, 51(6): 350-353. |
[6] | 张百红, 岳红云. 新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. |
[7] | 许凤琳, 吴刚. EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[8] | 王盈, 刘楠, 郭兵. 抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[9] | 张蕊, 褚衍六. 基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[10] | 高凡, 王萍, 杜超, 褚衍六. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[11] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东. ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. |
[12] | 范志鹏, 余静, 胡静, 廖正凯, 徐禹, 欧阳雯, 谢丛华. 炎症标志物的变化趋势对一线接受免疫联合化疗的晚期非小细胞肺癌患者预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(5): 257-266. |
[13] | 刘静, 刘芹, 黄梅. 基于SMOTE算法的食管癌放化疗患者肺部感染的预后模型构建[J]. 国际肿瘤学杂志, 2024, 51(5): 267-273. |
[14] | 杨琳, 路宁, 温华, 张明鑫, 朱琳. 炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[15] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝. 癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||