Journal of International Oncology ›› 2023, Vol. 50 ›› Issue (11): 696-700.doi: 10.3760/cma.j.cn371439-20230715-00131
• Reviews • Previous Articles Next Articles
Received:
2023-07-15
Revised:
2023-08-15
Online:
2023-11-08
Published:
2024-01-11
Contact:
Jia Xiuhong
E-mail:jiaxiuhong001@163.com
Zhang Ting, Jia Xiuhong. Research progress of pyroptosis in leukemia[J]. Journal of International Oncology, 2023, 50(11): 696-700.
[1] | Long L, Assaraf YG, Lei ZN, et al. Genetic biomarkers of drug resistance: a compass of prognosis and targeted therapy in acute myeloid leukemia[J]. Drug Resist Updat, 2020, 52: 100703. DOI: 10.1016/j.drup.2020.100703. |
[2] | Yu P, Zhang X, Liu N, et al. Pyroptosis: mechanisms and diseases[J]. Signal Transduct Target Ther, 2021, 6(1): 128. DOI: 10.1038/s41392-021-00507-5. |
[3] | Zhao P, Wang M, Chen M, et al. Programming cell pyroptosis with biomimetic nanoparticles for solid tumor immunotherapy[J]. Biomaterials, 2020, 254: 120142. DOI: 10.1016/j.biomaterials.2020.120142. |
[4] | Zychlinsky A, Prevost MC, Sansonetti PJ. Shigella flexneri induces apoptosis in infected macrophages[J]. Nature, 1992, 358(6382): 167-169. DOI: 10.1038/358167a0. |
[5] | Wang H, Zhou X, Li C, et al. The emerging role of pyroptosis in pediatric cancers: from mechanism to therapy[J]. J Hematol Oncol, 2022, 15(1): 140. DOI: 10.1186/s13045-022-01365-6. |
[6] |
Shi J, Gao W, Shao F. Pyroptosis: gasdermin-mediated programmed necrotic cell death[J]. Trends Biochem Sci, 2017, 42(4): 245-254. DOI: 10.1016/j.tibs.2016.10.004.
pmid: 27932073 |
[7] | Wang L, Hauenstein AV. The NLRP3 inflammasome: mechanism of action, role in disease and therapies[J]. Mol Aspects Med, 2020, 76: 100889. DOI: 10.1016/j.mam.2020.100889. |
[8] |
Wang K, Sun Q, Zhong X, et al. Structural mechanism for GSDMD targeting by autoprocessed caspases in pyroptosis[J]. Cell, 2020, 180(5): 941-955.e20. DOI: 10.1016/j.cell.2020.02.002.
pmid: 32109412 |
[9] | Bauer R, Rauch I. The NAIP/NLRC4 inflammasome in infection and pathology[J]. Mol Aspects Med, 2020, 76: 100863. DOI: 10.1016/j.mam.2020.100863. |
[10] | Wang Y, Gao W, Shi X, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin[J]. Nature, 2017, 547(7661): 99-103. DOI: 10.1038/nature22393. |
[11] |
Rogers C, Erkes DA, Nardone A, et al. Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation[J]. Nat Commun, 2019, 10(1): 1689. DOI: 10.1038/s41467-019-09397-2.
pmid: 30976076 |
[12] | 杨羽依, 刘秀萍. Gasdermin E诱导细胞焦亡的研究进展[J]. 中华病理学杂志, 2021, 50(4): 421-424. DOI: 10.3760/cma.j.cn112151-20200724-00589. |
[13] | Chen KW, Demarco B, Heilig R, et al. Extrinsic and intrinsic apoptosis activate pannexin-1 to drive NLRP3 inflammasome assembly[J]. EMBO J, 2019, 38(10): e101638. DOI: 10.15252/embj.2019101638. |
[14] | Zhou T, Qian K, Li YY, et al. The pyroptosis-related gene signature predicts prognosis and reveals characterization of the tumor immune microenvironment in acute myeloid leukemia[J]. Front Pharmacol, 2022, 13: 951480. DOI: 10.3389/fphar.2022.951480. |
[15] |
Johnson DC, Taabazuing CY, Okondo MC, et al. DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia[J]. Nat Med, 2018, 24(8): 1151-1156. DOI: 10.1038/s41591-018-0082-y.
pmid: 29967349 |
[16] | Ren J, Tao Y, Peng M, et al. Targeted activation of GPER enhances the efficacy of venetoclax by boosting leukemic pyroptosis and CD8+ T cell immune function in acute myeloid leukemia[J]. Cell Death Dis, 2022, 13(10): 915. DOI: 10.1038/s41419-022-05357-9. |
[17] | Leu WJ, Chang HS, Chen IS, et al. Antileukemic natural product induced both apoptotic and pyroptotic programmed cell death and differentiation effect[J]. Int J Mol Sci, 2021, 22(20): 11239. DOI: 10.3390/ijms222011239. |
[18] |
Tian W, Wang Z, Tang NN, et al. Ascorbic acid sensitizes colorectal carcinoma to the cytotoxicity of arsenic trioxide via promoting reactive oxygen species-dependent apoptosis and pyroptosis[J]. Front Pharmacol, 2020, 11: 123. DOI: 10.3389/fphar.2020.00123.
pmid: 32153415 |
[19] |
Yang W, Liu S, Li Y, et al. Pyridoxine induces monocyte-macrophages death as specific treatment of acute myeloid leukemia[J]. Cancer Lett, 2020, 492: 96-105. DOI: 10.1016/j.canlet.2020.08.018.
pmid: 32860849 |
[20] |
Zhou L, Yao Q, Ma L, et al. TAF1 inhibitor Bay-299 induces cell death in acute myeloid leukemia[J]. Transl Cancer Res, 2021, 10(12): 5307-5318. DOI: 10.21037/tcr-21-2295.
pmid: 35116379 |
[21] |
Young MM, Bui V, Chen C, et al. FTY720 induces non-canonical phosphatidylserine externalization and cell death in acute myeloid leukemia[J]. Cell Death Dis, 2019, 10(11): 847. DOI: 10.1038/s41419-019-2080-5.
pmid: 31699964 |
[22] |
Zhou Y, Kong Y, Jiang M, et al. Curcumin activates NLRC4, AIM2, and IFI16 inflammasomes and induces pyroptosis by up-regulated ISG3 transcript factor in acute myeloid leukemia cell lines[J]. Cancer Biol Ther, 2022, 23(1): 328-335. DOI: 10.1080/15384047.2022.2058862.
pmid: 35435150 |
[23] |
Wiemels JL, Walsh KM, de Smith AJ, et al. GWAS in childhood acute lymphoblastic leukemia reveals novel genetic associations at chromosomes 17q12 and 8q24.21[J]. Nat Commun, 2018, 9(1): 286. DOI: 10.1038/s41467-017-02596-9.
pmid: 29348612 |
[24] |
Dai Y, Huang J, Kuang P, et al. Dasatinib and interferon alpha synergistically induce pyroptosis-like cell death in philadelphia chromosome positive acute lymphoblastic leukemia[J]. Am J Cancer Res, 2022, 12(6): 2817-2832.
pmid: 35812060 |
[25] | Mondet J, Chevalier S, Mossuz P. Pathogenic roles of S100A8 and S100A9 proteins in acute myeloid and lymphoid leukemia: clinical and therapeutic impacts[J]. Molecules, 2021, 26(5): 1323. DOI: 10.3390/molecules26051323. |
[26] | Wang Z, Wu Z, Liu Y, et al. New development in CAR-T cell therapy[J]. J Hematol Oncol, 2017, 10(1): 53. DOI: 10.1186/s13045-017-0423-1. |
[27] | Liu Y, Fang Y, Chen X, et al. Gasdermin E-mediated target cell pyroptosis by CAR T cells triggers cytokine release syndrome[J]. Sci Immunol, 2020, 5(43): eaax7969. DOI: 10.1126/sciimmunol.aax7969. |
[28] | Minciacchi VR, Kumar R, Krause DS. Chronic myeloid leukemia: a model disease of the past, present and future[J]. Cells, 2021, 10(1): 117. DOI: 10.3390/cells10010117. |
[29] |
Zhang A, Yu J, Yan S, et al. The genetic polymorphism and expression profiles of NLRP3 inflammasome in patients with chronic myeloid leukemia[J]. Hum Immunol, 2018, 79(1): 57-62. DOI: 10.1016/j.humimm.2017.10.013.
pmid: 29097263 |
[30] | Dong HQ, Liang SJ, Xu YL, et al. Liproxstatin-1 induces cell cycle arrest, apoptosis, and caspase-3/GSDME-dependent secon-dary pyroptosis in K562 cells[J]. Int J Oncol, 2022, 61(4): 119. DOI: 10.3892/ijo.2022.5409. |
[31] |
Zhang J, Chen Y, He Q. Distinct characteristics of dasatinib-induced pyroptosis in gasdermin E-expressing human lung cancer A549 cells and neuroblastoma SH-SY5Y cells[J]. Oncol Lett, 2020, 20(1): 145-154. DOI: 10.3892/ol.2020.11556.
pmid: 32565942 |
[32] | Sadaf S, Awasthi D, Singh AK, et al. Pyroptotic and apoptotic cell death in iNOS and nNOS overexpressing K562 cells: a mechanistic insight[J]. Biochem Pharmacol, 2020, 176: 113779. DOI: 10.1016/j.bcp.2019.113779. |
[33] | 陈丽丽, 廖芬芳, 陈向洁, 等. 鬼臼苦素诱导Ph+慢性髓系白血病细胞焦亡及其相关分子机制研究[J]. 广东药科大学学报, 2022, 38(3): 1-5. DOI: 10.16809/j.cnki.2096-3653.2022031402. |
[34] | Sha Y, Jiang R, Miao Y, et al. The pyroptosis-related gene signature predicts prognosis and indicates the immune microenvironment status of chronic lymphocytic leukemia[J]. Front Immunol, 2022, 13: 939978. DOI: 10.3389/fimmu.2022.939978. |
[1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou. Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer [J]. Journal of International Oncology, 2024, 51(6): 321-325. |
[2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[3] | Yuan Jian, Huang Yanhua. Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer [J]. Journal of International Oncology, 2024, 51(6): 338-343. |
[4] | Chen Hongjian, Zhang Suqing. Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients [J]. Journal of International Oncology, 2024, 51(6): 344-349. |
[5] | Guo Zehao, Zhang Junwang. Role of PFDN and its subunits in tumorigenesis and tumor development [J]. Journal of International Oncology, 2024, 51(6): 350-353. |
[6] | Zhang Baihong, Yue Hongyun. Advances in anti-tumor drugs with new mechanisms of action [J]. Journal of International Oncology, 2024, 51(6): 354-358. |
[7] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[8] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[9] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[10] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[11] | Liu Jing, Liu Qin, Huang Mei. Prognostic model construction of lung infection in patients with chemoradiotherapy for esophageal cancer based on SMOTE algorithm [J]. Journal of International Oncology, 2024, 51(5): 267-273. |
[12] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. |
[13] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. |
[14] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi. Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer [J]. Journal of International Oncology, 2024, 51(5): 286-291. |
[15] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||